Understanding Moment of Inertia for a Box: Calculations and Examples

AI Thread Summary
The discussion focuses on calculating the moment of inertia for a box with dimensions a, b, and c, and mass M. The user seeks assistance in understanding the calculations for two specific axes: one through the center and perpendicular to the faces of sides a and b, and another along an edge of length c. A response emphasizes the need for clarification and encourages the user to show their work to identify where they are struggling. The moment of inertia is defined as the integral of the squared distance from the axis of rotation, multiplied by density, over the volume of the box. The complexity arises from the box's lack of circular symmetry, necessitating careful setup of the coordinate system for accurate calculations.
ilikephysics
Messages
18
Reaction score
0
I'm really having problems understanding how to do moment of inertia. Can someone please help me with this problem? Explain it to me please. Thanks so much.

Question:

Find the moment of inertia of a box of sides a, b, and c, mass M, and uniform density for rotations about an axis passing through its center and perpendicular to the two faces of sides a and b.

Find the moment of inertia for rotations about an axis passing along one edge of length c.
 
Physics news on Phys.org
please help me

will someone please help?
 
I think this question sounds a little vague. Can you clairfy it a little better?

Also, show some work that you have done so we can see where you are having trouble. That will also help us (atleast me) visualize what is going on.
 
The "moment of inertia" of an object around an axis of rotation is the integral of (distance of each point from the axis of rotation)2 times the density. The integral is taken over the volume of the object. The fact that this is not circularly symmetric makes it a little harder. Take the (uniform) density to be the constant δ Set up a coordinate system so that center of one "a by b" face is at (0,0,0) and the center of the other face is at (0,0,c). Then the distance from a point (x,y,z) to the nearest point on the axis of rotation, (0, 0, z), is &radic:(x2+ y2and its square is, of course, simply x2+y2. The moment of inertia is:
\int_{x=-a/2}^{a/2}\int_{y=-b/2}^{b/2}\int_{z=0}^{c} \delta(x^2+ y^2)dzdydx
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top