snoopies622
- 852
- 29
I'm enjoying this introductory essay about quantum mechanics found here
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/kenny/papers/psi.html
and I have a question. About five-eighths of the way into it a wave function is given "at time t=0",
<br /> <br /> \psi = \sqrt { \frac {2} {L} } [ \frac {1}{2} sin (\pi x / L) + \frac { \sqrt {3} }{2} i sin (5 \pi x / L)]<br /> <br />
and some questions and answers follow. If I am understanding the authors, the answers imply that this wavefunction is a (normalized) linear combination of two momentum eigenfunctions, where the momenta are h/2L and 5h/2L.
My question is, shouldn't
<br /> <br /> \psi = \sqrt { \frac {2} {L} } [ \frac {1}{2} (cos (\pi x / L) + i sin (\pi x / L)) + \frac { \sqrt {3} }{2} (cos (5 \pi x / L)<br /> + i sin (5 \pi x / L))]<br /> <br />
or - more succinctly -
<br /> <br /> <br /> \psi = \sqrt {\frac {2} {L} } [ \frac {1}{2} e ^ {i \pi x / L } + \frac { \sqrt {3} } {2} e ^ {i 5 \pi x / L } ]<br /> <br />
?
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/kenny/papers/psi.html
and I have a question. About five-eighths of the way into it a wave function is given "at time t=0",
<br /> <br /> \psi = \sqrt { \frac {2} {L} } [ \frac {1}{2} sin (\pi x / L) + \frac { \sqrt {3} }{2} i sin (5 \pi x / L)]<br /> <br />
and some questions and answers follow. If I am understanding the authors, the answers imply that this wavefunction is a (normalized) linear combination of two momentum eigenfunctions, where the momenta are h/2L and 5h/2L.
My question is, shouldn't
<br /> <br /> \psi = \sqrt { \frac {2} {L} } [ \frac {1}{2} (cos (\pi x / L) + i sin (\pi x / L)) + \frac { \sqrt {3} }{2} (cos (5 \pi x / L)<br /> + i sin (5 \pi x / L))]<br /> <br />
or - more succinctly -
<br /> <br /> <br /> \psi = \sqrt {\frac {2} {L} } [ \frac {1}{2} e ^ {i \pi x / L } + \frac { \sqrt {3} } {2} e ^ {i 5 \pi x / L } ]<br /> <br />
?