Understanding Motion in a Pulley System

psykatic
Messages
42
Reaction score
0

Homework Statement



A smooth ring A of mass m can slide on a fixed horizontal rod. A string tied to the ring passes over a fixed pulley B and carries a block C of Mass M (=2m) as shown in the given figure. At a instant at the string between the ring and the pulley makes an angle \theta with the rod, (a)Show that, if the ring slides with a speed v, the block descends with speed v cos\theta. (b) With what acceleration will the ring start moving if the system is released from rest with \theta=~30^\circ?

Homework Equations



Newtons Equations, free body diagram

The Attempt at a Solution



Well, this question happens to be from a textbook. And its a solved one too.. The solution which they have given is quite complicated! I thought I'd get a brief explanation of "why and how" over it, and yes an alternative method would be highly appreciated!

The solution, is like this (as given in the book),

Suppose in a small time interval \delta t the ring is displaced from A to A' and the block from C to C'. Drop a perpendicular A'P from A' to AB. For small displacements A'B~ PB (I didnt get this!), since the length is constant (?), we have,
AB+BC= A'B+BC'
AP+PB+BC=A'B+BC'
AP=BC'-BC=CC' (as A'B=PB)

AA'cos\theta= CC'

or \frac{AA'cos\theta}{\delta t}=~\frac{CC'}{\delta t}

Therefor, (velocity of the ring)cos\theta= (velocity of the block)Please help :cry:
 

Attachments

Last edited:
Physics news on Phys.org
When the ring moves with a velocity v horizontally, its component along the string is v*cos(theta). Since the length of string between the ring and block is costant, the velocity of the block is equal to v*cos(theta).
 
Well, did you have a look at the diagram? It hasnt been approved yet..
 

Suppose in a small time interval LaTeX Code: \\delta t the ring is displaced from A to A' and the block from C to C'. Drop a perpendicular A'P from A' to AB. For small displacements A'B~ PB (I didnt get this!), since the length is constant (?), we have,

When A and A(dash) are very close, AB and A(dash)B are nearly equal. If you take BA(dash) equal to BP, AP becomes A*A(dash)cos(theta) and A*A(dash)/t = velocity. The length of the string is ABC = A(dash)BC(dash)
 
okay, that's fine with me, I've several more problems over the free body diagrams! I'll post it in mean time! Thank You!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top