A Understanding of conjugate directions

  • A
  • Thread starter Thread starter Ironphys
  • Start date Start date
  • Tags Tags
    Conjugate
Ironphys
Messages
1
Reaction score
0
TL;DR Summary
Understanding of conjugate directions
I am reading a good paper of J. R. Shewchuk, titled "An introduction to the conjugate gradient method without the agonizing pain", however, I do not fully understand the idea of conjugate directions. As shown in Figure 22a, where the vectors d1 and d2 are not orthogonal. These vectors are transformed by a multiplication with the matrix A and after the transformation we have the corresponding vectors d'1 (=A*d1) and d'2 (=A*d2) as in Figure 22b. If the transformed vectors d'1 and d'2 are orthogonal now, the original vectors d1 and d2 satisfy the condition d2T*A*d1 = 0. The vectors d1 and d2 are then called A-orthogonal or conjuate. So far, so good!

However, I would expect a different condition. The transformed vectors d'1 and d'2 should satisfy the condition d'2T*d'1 = 0. Inserting there d'1 = A*d1 and d'2 = A*d2 would yield the condition d2T*AT*A*d1=0. This condition is different from the condition for the A-orthogonality. And I don't understand why ... ?
 
Last edited:
Physics news on Phys.org
Are you sure it should be the same matrix? Or just any matrix, like ##d_2^\tau B d_1## with ##B=A^\tau A##. Another way out is to search a matrix ##A## such that ##d_1'=d_1A## and ##d_2'=Ad_2## are orthogonal.
 
Last edited:
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top