A Understanding of conjugate directions

  • Thread starter Thread starter Ironphys
  • Start date Start date
  • Tags Tags
    Conjugate
Ironphys
Messages
1
Reaction score
0
TL;DR
Understanding of conjugate directions
I am reading a good paper of J. R. Shewchuk, titled "An introduction to the conjugate gradient method without the agonizing pain", however, I do not fully understand the idea of conjugate directions. As shown in Figure 22a, where the vectors d1 and d2 are not orthogonal. These vectors are transformed by a multiplication with the matrix A and after the transformation we have the corresponding vectors d'1 (=A*d1) and d'2 (=A*d2) as in Figure 22b. If the transformed vectors d'1 and d'2 are orthogonal now, the original vectors d1 and d2 satisfy the condition d2T*A*d1 = 0. The vectors d1 and d2 are then called A-orthogonal or conjuate. So far, so good!

However, I would expect a different condition. The transformed vectors d'1 and d'2 should satisfy the condition d'2T*d'1 = 0. Inserting there d'1 = A*d1 and d'2 = A*d2 would yield the condition d2T*AT*A*d1=0. This condition is different from the condition for the A-orthogonality. And I don't understand why ... ?
 
Last edited:
Physics news on Phys.org
Are you sure it should be the same matrix? Or just any matrix, like ##d_2^\tau B d_1## with ##B=A^\tau A##. Another way out is to search a matrix ##A## such that ##d_1'=d_1A## and ##d_2'=Ad_2## are orthogonal.
 
Last edited:
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
718
Replies
2
Views
859
Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
5K
Replies
3
Views
4K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K