- #1
PsychonautQQ
- 784
- 10
Homework Statement
"A family of sets is called pairwise disjoint if any two distinct sets in the family are disjoint".
so if ANY of the two sets are disjoint with each other then the whole family can be called pairwise disjoint..
"If A is a nonempty set, a family P of subsets of A is called a partition of A (and the sets in P are called the cells of the partition) if
1) No cells are empty
2) The cells are pairwise disjoint
3) Every element of A belongs to some cell.
"If P is a partition of A, (2) and (3) clearly imply that each element of A lies in exactly one cell of P."
Say A = {1,2,3,4,5,6} P= {{1,2},{3,4},{5,6,1}}, This partition is pairwise disjoint as {3,4} have no intersection with the {1,2} (as well as {5,6,1} for that matter). And even though there is intersection of the 1 between {1,2} and {5,6,1} it only takes one disjoint subset to be considered pairwise disjoint. I feel like my example did not violate (1) (2) or (3). What am I missing here?
Homework Equations
The Attempt at a Solution
Last edited: