Understanding Quantum Monte Carlo Methods: Clearing up Doubts on Their Use

Tilde90
Messages
20
Reaction score
0
Hi,

I understood the formal derivation of various QMC methods like Path Integral Monte Carlo. However, at the end of the day I still have a doubt on how to effectively use these techniques.

Given that we can interpret \beta in the quantum operator e^{-\beta\hat{H}} both as an inverse temperature and an imaginary time, the aim of these algorithms should be to compute an approximation of this operator. Indeed, if we would directly measure quantities from the various configurations sampled along a simulation, in the "inverse temperature" case we would have samples respecting a probability density based on \beta/M, where M is the discretization introduced in the Trotter decomposition. Instead, in the "imaginary time" case we would obtain samples at various discrete time-steps, thus getting averages along the time as well (and we wouldn't obtain quantities such as <\psi_t|\hat{A}|\psi_t> at a given time t, with \hat{A} being a certain physical quantity). Am I wrong?

Please, help! :)
 
Physics news on Phys.org
Isn't there anybody who knows something about Quantum Monte Carlo methods? :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top