Since I don't know exactly what you're trying to do (are you trying to implement a really fancy lighting model as in that paper you mentioned? Or are you just trying to implement a basic lighting model and that web BRDF page is just the first good resource you found?), it's hard to say exactly what you should be doing, but:
mnb96 said:
Could you mention one of these illumination models for point-sources?
A basic one to start out with is the Phong lighting model, which is a diffuse component (for the matte objects, e.g. paper or a chalkboard are almost all diffuse) and a specular component (for shiny glints off of shiny metal, plastic, etc.) You can google it, but I also found these, both of which look right to me: http://www.nbb.cornell.edu/neurobio/land/oldstudentprojects/cs490-95to96/guo/report.html"
The basic idea is that you're NOT considering a point on a surface and gathering lighting contributions from all angles in the hemisphere that could possibly be contributing light, but that you ARE looping through the lights in the scene and calculating its contribution to the illumination of that point.
If you wanted to get something up as fast as possible, the easiest to do would be just the diffuse contribution, which is simply I*Kd*(L http://en.wikipedia.org/wiki/Dot_product" N), where I is the intensity of the light (set it to 1), Kd is the diffuse constant of whatever material you are trying to set (also set to 1 to be simple), L is the normalized vector from the point you're shading to the light (0,0,1 in your case), and N is the surface normal of your point (also 0,0,1 in your case), so it resolves to (0,0,1) dot (0,0,1) which is 1, so your diffuse response is 1.
If you moved your light source to (1,0,1), then it would resolve to (.707,0,.707) dot (0,0,1), which is .707, so your diffuse response is .707. If the light source moves to (1,0,0), then your diffuse response is 0.
mnb96 said:
If you replace the point source in (0,0,1) with a spherical source in (0,0,1) you get the same problem. Namely, at the zenith of our point P=(0,0,0) you will find the pole of the sphere, where differential patches have surface-area equal to zero. The point P will indeed receive radiance from other directions but won´t receive any radiance from the pole, which sounds a bit strange because after all the sphere is emitting light also from its pole.
My calculus is too old and rusty to argue the point, but integrals always involve summing an infinite number of slices with 0 size. So yeah, at exactly the pole (0,0,1), there is 0 light coming in, but there is some
almost 0 but definitely >0 amount of light coming in from the patch of
almost 0 size centered at the pole.