torehan
- 41
- 0
f(\vec{r}) = f(\vec{r}+\vec{T})
\vec{T}= u_{1} \vec{a_{1}} + u_{2} \vec{a_{2}}+u_{3} \vec{a_{3}}
u_{1},u_{2},u_{3} are integers.
f(\vec{r}+\vec{T})= \sum n_{g} e^{(i\vec{G}.(\vec{r}+\vec{R}) )}= f(\vec{r})
e^{i\vec{G}.\vec{R} }= 1
\vec{G}.\vec{R} = 2\pi m
we call \vec{G}=h\vec{g_{1}} + k \vec{g_{2}}+l \vec{g_{3}} reciprocal lattice vector.
but what about the primitive lattice vectors \vec{g_{1}} , \vec{g_{2}} , \vec{g_{3}} ?
To simplify the discussion consider \vec{T_{1}} in 1D;
\vec{T_{1}} = u_{1} \vec{a_{1}}
\vec{G}.\vec{T} =(h\vec{g_{1}} + k \vec{g_{2}}+l \vec{g_{3}}) . ( u_{1} \vec{a_{1}}) = 2 \pi m
Is there any definiton that indicates direct primitive lattice vectors and reciprocal primitive lattice vectors orthogonalities?
i.e
\vec{g_{1}} . \vec{a_{1}} = 2 \pi
\vec{g_{2}} . \vec{a_{1}} = \vec{g_{3}} . \vec{a_{1}} = 0
\vec{T}= u_{1} \vec{a_{1}} + u_{2} \vec{a_{2}}+u_{3} \vec{a_{3}}
u_{1},u_{2},u_{3} are integers.
f(\vec{r}+\vec{T})= \sum n_{g} e^{(i\vec{G}.(\vec{r}+\vec{R}) )}= f(\vec{r})
e^{i\vec{G}.\vec{R} }= 1
\vec{G}.\vec{R} = 2\pi m
we call \vec{G}=h\vec{g_{1}} + k \vec{g_{2}}+l \vec{g_{3}} reciprocal lattice vector.
but what about the primitive lattice vectors \vec{g_{1}} , \vec{g_{2}} , \vec{g_{3}} ?
To simplify the discussion consider \vec{T_{1}} in 1D;
\vec{T_{1}} = u_{1} \vec{a_{1}}
\vec{G}.\vec{T} =(h\vec{g_{1}} + k \vec{g_{2}}+l \vec{g_{3}}) . ( u_{1} \vec{a_{1}}) = 2 \pi m
Is there any definiton that indicates direct primitive lattice vectors and reciprocal primitive lattice vectors orthogonalities?
i.e
\vec{g_{1}} . \vec{a_{1}} = 2 \pi
\vec{g_{2}} . \vec{a_{1}} = \vec{g_{3}} . \vec{a_{1}} = 0
Last edited: