Undergrad Understanding the Coordinates in the Lagrangian for a Pendulum

Click For Summary
The discussion focuses on understanding the coordinates used in the Lagrangian formulation for a pendulum, specifically referencing a solution from Landau's classical mechanics book. The coordinates for the support point and the mass are derived from the harmonic oscillator model, with the support point defined as ##\mathbf{r}_p = a(\cos{\gamma t}, -\sin{\gamma t})## and the radius vector from the support point to the mass as ##\mathbf{R} = l(\sin{\phi}, \cos{\phi})##. The final coordinates of the mass are a combination of these two vectors, leading to a clearer understanding of the pendulum's motion. The poster expresses gratitude for the clarification received. This exchange highlights the importance of visual aids and mathematical representation in grasping complex mechanics concepts.
p1ndol
Messages
7
Reaction score
3
So I've been studying classical mechanics and have come across a small doubt with the solution provided to the problem in question from Landau's book. My question is: why are the coordinates for the particle given as they are in the solution? I imagine it has something to do with the harmonic oscillator, but I'd like to properly understand. I appreciate any kind of help, and I'm sorry if this post is somehow incorrect, it is my first one regarding questions.
 

Attachments

  • Captura de Tela (66).png
    Captura de Tela (66).png
    28.5 KB · Views: 171
Physics news on Phys.org
Did you look at the figure? For instance in (a), the support point ##p## has coordinates ##\mathbf{r}_p = a(\cos{\gamma t}, -\sin{\gamma t})## and the radius vector from ##p## to ##m## has coordinates ##\mathbf{R} = l(\sin{\phi}, \cos{\phi})## then the coordinates of ##m## are nothing but those of the vector ##\mathbf{r}_p + \mathbf{R}##.
 
  • Like
Likes vanhees71 and p1ndol
I understand it now, thanks!
 
For simple comparison, I think the same thought process can be followed as a block slides down a hill, - for block down hill, simple starting PE of mgh to final max KE 0.5mv^2 - comparing PE1 to max KE2 would result in finding the work friction did through the process. efficiency is just 100*KE2/PE1. If a mousetrap car travels along a flat surface, a starting PE of 0.5 k th^2 can be measured and maximum velocity of the car can also be measured. If energy efficiency is defined by...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 48 ·
2
Replies
48
Views
3K
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K