Understanding the equation of an oscillating string

  • Thread starter Thread starter cosmogirl90
  • Start date Start date
  • Tags Tags
    Oscillating String
AI Thread Summary
The discussion centers on understanding the equation of an oscillating string represented by y' = (0.80 cm) sin[(π/3 cm-1)x] cos[(45π s-1)t]. Participants are confused about the amplitude and speed of the two waves that create this oscillation, noting that the amplitude of 0.8 cm does not apply directly to the individual waves. The distance between nodes is calculated using the wavelength formula, lambda = 2π/k, but some users report errors in their calculations. There is a consensus that the original equation needs careful interpretation to correctly identify the parameters involved. Overall, the thread highlights the complexities of analyzing standing waves formed by the superposition of two traveling waves.
cosmogirl90
Messages
2
Reaction score
0

Homework Statement



y' = (0.80 cm) sin[(π/3 cm-1)x] cos[(45π s-1)t]
(a) What are the amplitude and speed of the two waves (identical except for direction of travel) whose superposition gives this oscillation?
(b) What is the distance between nodes?
(c) What is the speed of a particle of the string at the position x = 1.5 cm when t = 9/8 s?

Homework Equations


(a)y1=(.8cm)sin[(π/3 cm-1)x + (45π s-1)t]
y2=(.8cm)sin[(π/3 cm-1)x - (45π s-1)t]

y(x,t)=A*sin(kx-omega*t)
where A is ampltude, k is wave number, omega is frequency

(b)lambda=2π/k

The Attempt at a Solution


When I answered that my amplitude was .8cm, that was wrong. so I'm confused about whether I'm using the wrong interpretation of the oscillating string's equation. Also, when I used the equation in (b) I got the wrong wavelength. I think the problem is that I'm not understanding what each of the numbers in the original equation correspond to.
 
Physics news on Phys.org
This is a standing wave, the sum of two sine waves traveling in opposite directions. Find these two waves. ehild
 
I thought that was the first thing I did under useful equations. Are those two equations not right for the two waves traveling in opposite directions?
 
cosmogirl90 said:

Homework Statement



y' = (0.80 cm) sin[(π/3 cm-1)x] cos[(45π s-1)t]
(a) What are the amplitude and speed of the two waves (identical except for direction of travel) whose superposition gives this oscillation?
(b) What is the distance between nodes?
(c) What is the speed of a particle of the string at the position x = 1.5 cm when t = 9/8 s?

Homework Equations


(a)y1=(.8cm)sin[(π/3 cm-1)x + (45π s-1)t]
y2=(.8cm)sin[(π/3 cm-1)x - (45π s-1)t]
The amplitudes are NOT the same as the amplitude of the original function, .8.
sin(x+ y)= sin(x)cos(y)+ cos(x)sin(y)
sin(x- y)= sin(x)cos(y)- cos(x)sin(y) (because sine is an odd function and cosine even)

Adding the two equations, 2 sin(x)cos(y)= sin(x+ y)+ sin(x- y) and so
Asin(x)cos(y)= (A/2)sin(x+y)+ (A/2)sin(x- y).

y(x,t)=A*sin(kx-omega*t)
where A is ampltude, k is wave number, omega is frequency

(b)lambda=2π/k

The Attempt at a Solution


When I answered that my amplitude was .8cm, that was wrong. so I'm confused about whether I'm using the wrong interpretation of the oscillating string's equation. Also, when I used the equation in (b) I got the wrong wavelength. I think the problem is that I'm not understanding what each of the numbers in the original equation correspond to.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top