harrylin said:
Please back up your claim and cite a reference according to which "in relativity", a reference system that is at rest to the surface of a non-rotating planet is not in good approximation a Galilean frame. As far as I know Galilean frames are uniquely defined, there is no ambiguity like with the term "inertial".
No book on GR written 1970s or later that I have seen even mentions Galilean frames. On the other hand, MTW has a whole section on "Proper Reference Frames" in general relativity, which is is my primary reference on the matter [I can't give a page number at this moment because I am on vacation; also my internet access is limited]. Numerous papers on Fermi-Normal coordinates espouse the same approach. My posts earlier on this, specifically formulas I gave in discussion with Peter Donnis, come from this discussion.
In the framework of "Proper Reference Frames", the ECI frame is the (insert local if you must) inertial frame of a non-spinning observer in the center of the earth. It has exact Minkowski metric at the origin and vanishing connection components at the origin (which is why it is inertial). Of course this reference frame includes the surface of the earth, but it is completely different from a reference frame 'of a lab on the surface'. The latter is defined by using the lab center as the origin, the lab center clock as the standard of time, and ruler measurements from the lab center. The result is completely different frame than the ECI. This lab frame is an accelerating frame, because the:
- mathematically: the connection coefficients do not vanish at the origin
- physically: the origin of the frame (lab center) experiences proper acceleration
In contrast, in Newtonian physics, the lab frame would be identical to the ECI frame [assuming a non-rotating earth] except for translation of origin. They would both be inertial frames.
[Note: ECI stands for "earth centered inertial" frame, and as used with GR, it has a metric varying radially from the center, with connection coefficients becoming non-vanishing away from the center. This gets at why I think local frames are more than just 'at a point' definitions. They are useful to describe physics in a possibly substantial spatial region and over a long period of time. The fundamental limit on their extension is only due to break down of forming a valid coordinate chart. In practice, they often lose utility before running into such fundamental issues (e.g. incorporating the sun in ECI is both complex and useless, but mathematically possible, in principle, in GR. Fermi-Normal coordinates do not yet break down, but they become intractable and useless.]