MHB Understanding the Integral in a Proof: A Closer Look at the Role of Supp and Chi

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Integral
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I am looking at the following proof:View attachment 5454

Why does it hold that $\int u_j \phi dx= \int (\psi_j \ast u) \phi dx$ ?
 

Attachments

  • conc.JPG
    conc.JPG
    24.5 KB · Views: 109
Physics news on Phys.org
We have that $X(\frac{x}{j})=1$ for $|x|<j$, right? And since we pick $j$ sufficiently large, it's like if we had $-\infty<j<+\infty$ and so we have $X(\frac{x}{j})=1$ for all the values of $x$, right?
 
You are correct that $\chi(x/j) = 1$ for $|x| < j$. To proceed, let $M > 0$ such that $\operatorname{supp}(\phi)\subset [-M,M]^n$; choose $j > M$. Then $\phi(x) = 0$ for all $|x| \ge j$. Thus, for all $j > M$,

$$\int u_j\phi\, dx = \int \chi\left(\frac{x}{j}\right)(\psi_j * u)\phi(x)\ dx = \int_{|x| < j} \chi\left(\frac{x}{j}\right)(\psi_j * u)\phi(x)\, dx = \int_{|x| < j} (\psi_j * u)\phi\, dx = \int (\psi_j * u)\phi\, dx$$
 
Euge said:
You are correct that $\chi(x/j) = 1$ for $|x| < j$. To proceed, let $M > 0$ such that $\operatorname{supp}(\phi)\subset [-M,M]^n$; choose $j > M$. Then $\phi(x) = 0$ for all $|x| \ge j$. Thus, for all $j > M$,

$$\int u_j\phi\, dx = \int \chi\left(\frac{x}{j}\right)(\psi_j * u)\phi(x)\ dx = \int_{|x| < j} \chi\left(\frac{x}{j}\right)(\psi_j * u)\phi(x)\, dx = \int_{|x| < j} (\psi_j * u)\phi\, dx = \int (\psi_j * u)\phi\, dx$$

I got it... Thanks a lot! (Smirk)
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top