Understanding the Magnitude of x(t) When x(t)=ej(2t+pi/4)

  • Thread starter Thread starter advance_lab
  • Start date Start date
advance_lab
Messages
3
Reaction score
0

Homework Statement


if
x(t)= ej(2t+pi/4)
then how can |x(t)|=1 ? :(

Homework Equations



Euler formula ? and then half angle or full angle or double angle formula?

The Attempt at a Solution

 
Physics news on Phys.org
Just Euler's formula is good enough

CLaim: |ejs|=1 for all values s.
 
Thanx for the reply sir
can u elaborate it a bit more?
 
ejs = cos(s)+jsin(s).

Look at what the definition of absolute value is for a complex number
 
ok i got it ... thanks a lot :) GOD bless you :)
lock it please.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top