Dale said:
Given some time like worldline, proper time is the time measured by a clock traveling along that worldline. It is given by ##\tau=\int_P \sqrt{1-v^2/c^2}dt##
This might help the OP...
This is an annotated spacetime diagram (a position-vs-time diagram, with time running upwards (by convention)).
Note that we are using the geometry of Minkowski spacetime--not Euclidean geometry (and not the Galilean geometry of the PHY101 position-vs-time graph).
The segment OP is a portion of Alice's worldline (who is at rest in this diagram).
The segment OQ is a portion of Bob's worldline (who is moving with velocity v in this diagram).
According to Alice, events (akin to 'points') P and Q are simultaneous (which is geometrically interpreted by saying that PQ is Minkowski-perpendicular to OP).
It is useful to think in terms of "rapidity" ##\theta## (the Minkowski-angle between two inertial observers).
We have Bob's velocity [according to Alice] as ##v=c\tanh\theta##.
For an inertial path OQ through spacetime (the inertial 'worldline' OQ ),
the proper time along that worldline (akin to an arc length along a path) is ##\tau_{OQ}##.
Observe that OQ is the hypotenuse of a MInkowski-right triangle.
The adjacent side OP is related by ##\tau_{OP}=\left( \cosh\theta\right) \tau_{OQ}##.
So,
$$\begin{eqnarray*}
\tau_{OQ}
&=&\left( \frac{1}{\cosh\theta}\right) \tau_{OP}\\
&=&\left( \sqrt{1-\tanh^2\theta}\right) \tau_{OP}\\
&=&\left( \sqrt{1-(v/c)^2}\right) \tau_{OP}.\\
&=&\left( \sqrt{1-(v/c)^2}\right) t.\\
\end{eqnarray*}$$
The last form is for describing the worldline as a 'function of t'.
If the path of interest is more complicated, the formula is generalized.
For piecewise inertial, add up the separate pieces, $$\tau=\sum_i \sqrt{1-(v_i/c)^2}\Delta t_i.$$
More generally, $$\tau=\int \sqrt{1-(v/c)^2}\ dt.$$
Here's an example of the ClockEffect/TwinParadox.
Suppose that are three worldlines from O to Z,
one inertial,
one with there-and-back speeds of (6/10)c,
and the last has there-and-back speeds of (8/10)c.
The inertial worldline OZ (with velocity 0 in this frame) has proper time 20.
$$\tau_{OPZ}=\sqrt{1-0^2}(20)=20.$$
The piecewise-inertial worldline OQZ has proper time 16.
$$\tau_{OQZ}=\tau_{OQ}+\tau_{QZ}=\sqrt{1-(6/10)^2}(10)+\sqrt{1-(-6/10)^2}(10)=8+8=16.$$
The piecewise-inertial worldline ORZ has proper time 12.
$$\tau_{ORZ}=\tau_{OR}+\tau_{RZ}=\sqrt{1-(8/10)^2}(10)+\sqrt{1-(-8/10)^2}(10)=6+6=12.$$
To visualize this, it is useful to draw a spacetime diagram on rotated graph paper (so that ticks are easier to draw).
Here's a more elaborate example.
I'll leave it to you to work out the numbers.
(See my insights for more information:
https://www.physicsforums.com/insights/spacetime-diagrams-light-clocks/
https://www.physicsforums.com/insights/relativity-rotated-graph-paper/ )