Understanding the Phase Constant in y(x,t) Equation

  • Thread starter Thread starter Sciencer
  • Start date Start date
  • Tags Tags
    Constant Phase
AI Thread Summary
The phase constant PHI in the wave equation y(x,t) = ym * sin(kx - wt - PHI) is crucial for accurately representing wave behavior when the wave does not start at zero at the origin (x=0, t=0). It allows for the shifting of the wave profile in space or time, which can be visualized by comparing wave snapshots at different phase values. When PHI is zero, the wave starts at its maximum or minimum, but introducing PHI shifts this starting point, demonstrating how the wave can move forward or backward. Understanding this shift clarifies the role of PHI in ensuring the equation accommodates various initial conditions. Thus, PHI is essential for capturing the general case of wave behavior.
Sciencer
Messages
8
Reaction score
0
Hi,

In the equation
y(x,t) = ym * sin(kx - wt - PHI)

I thought I understand why we have that phase constant atleast mathmetically but after thinking about it I don't think I understand it completely like here in my book it says the phase constant moves the wave forward or backward in space or time. Now let's say
we have wave at t = 0 and x = 0;

we would have y(x,t) = ym * sin(-PHI) that wouldn't really move it forward or backward in space or time if we had y(x,t) = ym + PHI then yeh it would have but I don't see how it would moves it backward or forward in that case ?

I can see how they derived
y(x,t) = ym * sin(kx - wt) but that PHI keeps confusing me.
 
Physics news on Phys.org
You might try sketching a 'snapshot' of the wave (that is a graph of y against x) at t = 0, first for the case \phi = 0, then for the case \phi = \pi/2. The shift (in the x direction) of the wave profile brought about by \phi should then be clear.

The purpose of including \phi is so we have an equation which fits the general case: when y doesn't happen to be zero when x = 0 and t = 0. [An alternative, sometimes permissible, sometimes not, is to choose our zero of time (or of x) expressly to ensure that y = 0 and \frac{\partial y}{\partial x} > 0 when t = 0 and x = 0. Then we don't have to bother with \phi.]
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Thread 'Recovering Hamilton's Equations from Poisson brackets'
The issue : Let me start by copying and pasting the relevant passage from the text, thanks to modern day methods of computing. The trouble is, in equation (4.79), it completely ignores the partial derivative of ##q_i## with respect to time, i.e. it puts ##\partial q_i/\partial t=0##. But ##q_i## is a dynamical variable of ##t##, or ##q_i(t)##. In the derivation of Hamilton's equations from the Hamiltonian, viz. ##H = p_i \dot q_i-L##, nowhere did we assume that ##\partial q_i/\partial...
Back
Top