LagrangeEuler
- 711
- 22
I'm a little bit confused. Matrices
\begin{bmatrix}<br /> \cos \theta & \sin \theta \\<br /> -\sin \theta & \cos \theta<br /> \end{bmatrix}
##\theta \in [0,2\pi]##
form a group. This is special orthogonal group ##SO(2)##. However it is possible to diagonalize this matrices and get
\begin{bmatrix}<br /> e^{i\theta} & 0 \\<br /> 0 & e^{-i \theta}<br /> \end{bmatrix}=e^{i \theta}\oplus e^{-i\theta}.
It looks like that ##e^{i\theta}## is irreducible representation of ##SO(2)##. However in ##e^{i\theta}## we have complex parameter ##i## and this is unitary group ##U(1)##. Where am I making the mistake?
\begin{bmatrix}<br /> \cos \theta & \sin \theta \\<br /> -\sin \theta & \cos \theta<br /> \end{bmatrix}
##\theta \in [0,2\pi]##
form a group. This is special orthogonal group ##SO(2)##. However it is possible to diagonalize this matrices and get
\begin{bmatrix}<br /> e^{i\theta} & 0 \\<br /> 0 & e^{-i \theta}<br /> \end{bmatrix}=e^{i \theta}\oplus e^{-i\theta}.
It looks like that ##e^{i\theta}## is irreducible representation of ##SO(2)##. However in ##e^{i\theta}## we have complex parameter ##i## and this is unitary group ##U(1)##. Where am I making the mistake?