Unequal Masses on a Pivot Rod: What Does it Mean?

  • Thread starter Thread starter PSEYE
  • Start date Start date
  • Tags Tags
    Mean Pivot Rod
PSEYE
Messages
13
Reaction score
0
I have a homework question that is referring to a pivot rod with unequal masses.


The spheres are small enough that they can be considered point particles.

what exactly does this mean?

I know how to solve the equation, but I'm assuming I can't use the I=2/5mr^2 to solve it.
If the masses are negligable, why are they unequal to begin with? LOL
 
Physics news on Phys.org
It means that you can ignore the sizes of the spheres, not their masses. (They have no rotational inertia about their center of mass.)
 
nvm, I just used what they were asking me to use, I just assumed the program knew that m_1 was lighter than m_2 and I was assuming correctly.
 
Thanks Doc Al!
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top