Uniform acceleration of rolling cart

AI Thread Summary
The lab involved rolling a cart down a ramp with a tickertape to measure time intervals of 0.10 seconds, leading to the creation of distance-time, average velocity-time, and acceleration-time graphs. The distance-time graph showed a curve, indicating non-uniform motion, while the average velocity was calculated using displacement differences over time intervals. Instantaneous velocities, determined by drawing tangents on the distance-time graph, were found to be slightly higher than average velocities, raising questions about their relationship. The average velocity-time graph did not pass through zero due to the initial velocity at the start of the measurement interval. Additionally, the calculated acceleration of 6.5 m/s^2, lower than the expected 9.8 m/s^2, could be attributed to experimental errors such as friction or measurement inaccuracies.
jnimagine
Messages
176
Reaction score
0
We did a lab, where a cart was rolled down a ramp and a tickertape was attached to the cart as it rolled down. When the cart finished the course of rolling down, a line was drawn across the tape through every sixth dot to show that it is an interval of 0.10s.
Then we had to make 3 graphs: distance - time, average velocity - time, and acceleration - time.
When the displacement was graphed, the graph was a curve. The average velocity was calculated by subtracting the displacement at 0.10s from the displacement of 0.20s then dividing it by 0.10s.
When tangents were drawn on the distance time graph and slopes calculated to find out the instantaneous velocity, the slopes were slightly larger than all the average velocities. It said that the average and the instantaneous velocity must be the same. Why is that?? and what could explain the differences between the two in my result?
Also, what are some reasons why the average velocity - time graph does not pass through zero?
When the average velocity was graphed and a line of best fit was drawn, the slope was caculated to figure out the acceleration. This acceleration was only 6.5m/s^2 instead of 9.8m/s^2. What could be some errors in the lab (not human errors) that could have caused this problem??

If anyone could suggest some explanations to my questions, I would greatly appreciate it. Thank you. :)
 
Physics news on Phys.org
Easy question first, why the graph does not pass through zero. it does not pass through zero because you started with a velocity interval between t=0s and t=.1s. The smaller that time interval, the closer you would get to a starting velocity of zero. You could have also held the cart at the top for a few points, then dlet it go. That would get you a line that started at zero then increased.

I do not know offhand why the average and instantaneous velocities would ever be the same in this case. At certain points, with smartly chosen averages you might be able to have them be the same. Also if you took your average speed across a smaller time you would get closer to the instantaneous velocity.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top