HoneyPi
- 3
- 0
Homework Statement
A uniform beam AB, of lenth l and mass m, is free in turn in a vertical plane about a smooth hinge at A. It is supported in a static position by a light string, of the same length l, attached to the end of end B of the beam and to an anchoring point C at a height h vertically above A.
- Draw a diagram showing clearly all the external forces acting on the beam.
- By considering the equilibrium conditions for the beam, find an expression for the tension in the string in terms of m, l, h and g, the magnitude of the acceleration due to gravity.
Homework Equations
<br /> \textbf{R} = R_j \textbf{j} + R_k \textbf{k} <br />
<br /> \textbf{W} = -mg \textbf{k} <br />
<br /> \textbf{T} = - \textsl{T} \cos\theta \textbf{j} + \textsl{T} \sin\theta \textbf{k} <br />
<br /> \textbf{r}_R = \textbf{0} <br />
<br /> \textbf{r}_W = \frac{1}{2} l \cos(\frac{1}{2} \theta) \textbf{j} <br />
<br /> \textbf{r}_T = l \cos(\frac{1}{2} \theta) \textbf{j}<br />
The Attempt at a Solution
(i)
(ii) Determining the torques:
<br /> \boldsymbol{\Gamma}_R = \textbf{0} <br />
<br /> \boldsymbol{\Gamma}_W = \frac{1}{2} l \cos(\frac{1}{2} \theta) \textbf{j} \times -mg \textbf{k} = - \frac{1}{2} l m g \cos(\frac{1}{2} \theta) \textbf{i} <br />
<br /> \boldsymbol{\Gamma}_T = l \cos(\frac{1}{2} \theta) \textbf{j} \times \textsl{T} \sin\theta \textbf{k} = l \textsl{T} \cos(\frac{1}{2} \theta) \sin\theta \textbf{i}<br />
Then since we consider the equilibrium conditions, we have
<br /> \boldsymbol{\Gamma}_T + \boldsymbol{\Gamma}_W + \boldsymbol{\Gamma}_R = \textbf{0}<br />
Solving this in i-direction gives:
<br /> l \textsl{T} \cos(\frac{1}{2} \theta) \sin\theta = \frac{1}{2} l m g \cos(\frac{1}{2} \theta)<br /> \Rightarrow \textsl{T} \sin\theta = \frac{1}{2} m g <br />
And now I am not sure about the following:
Since
\sin(\frac{1}{2} \theta) = \frac{\frac{1}{2} h }{l}
it follows that
2 \sin(\frac{1}{2} \theta) = \sin\theta = \frac{h}{l}
And so
<br /> \textsl{T} \frac{h}{l} = \frac{1}{2} m g \qquad \Rightarrow \quad \textsl{T} = \frac{mgl}{2h} <br />
I'd appreciate it if someone could help me out with the last part of (ii) and also checking whether I did the other parts correctly.
Thanks a lot :)
Honey \pi