What Are the Units in the Ring F[x] for a Field F?

  • Thread starter Thread starter sillyquestions
  • Start date Start date
  • Tags Tags
    Field Units
sillyquestions
Messages
3
Reaction score
0
If F is a field obtain all the units in F[x]?
 
Physics news on Phys.org
Well, this sounds like homework... so what have you tried on this problem? Have you at least come up with any ideas on how to approach it, no matter how stupid it may seem?
 
In particular: What is the definition of "Field" and what is the definition of "unit"?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top