iRaid said:
\int \frac{cos(x)}{1+sin^{3}(x)}dx
Have fun.
$$ u = \sin x, \quad du = \cos x $$
$$ = \int \frac{du}{1+u^3} = \int \frac{du}{(1+u)(1-x+u^2)} $$
At this point, I did a partial fraction decomp, rewriting the integral as:
$$ \int \left[ \frac{1/3}{1+u} + \frac{ -\frac{1}{3} u + 2/3}{1-u+u^2} \right] \, du $$
$$ =\frac{1}{3} \ln |1+u| + \int \left[ \frac{2/3}{1-u+u^2} - \frac{ \frac{1}{3} u }{1-u+u^2} \right] \, du $$
Doing those two integrals separately:
$$ \int \frac{2/3}{1-u+u^2} \, du $$
$$ \int \frac{2/3}{(u-1/2)^2 + 3/4} \, du = \frac{8}{9} \arctan \left( \frac{4}{3}(u-1/2) \right) $$
For the second one:
$$ \int \frac{ \frac{1}{3} u }{(u-1/2)^2 + 3/4} \, du $$
$$ z = u + 1/2 $$
$$ = \int \left[ \frac{ \frac{1}{3} z }{z^2 + 3/4} - \frac{1/6}{z^2 + 3/4} \right] \, dz $$
$$ = \frac{1}{6} \ln | z^2 + 3/4 | - \frac{2}{9} \arctan \left( \frac{4}{3} z \right) $$
Thus, the integral is:
$$ \int \frac{cos(x)}{1+sin^{3}(x)} \, dx = \frac{1}{3} \ln |1+ u| + \frac{8}{9} \arctan \left( \frac{4}{3}(u-1/2) \right) - \left[ \frac{1}{6} \ln |z^2 +3/4| - \frac{2}{9} \arctan \left( \frac{4}{3} z \right) \right] + C $$
$$ = \frac{1}{3} \ln |1+ \sin x| + \frac{10}{9} \arctan \left( \frac{4}{3}(u-1/2) \right) - \frac{1}{6} \ln |(u+1/2)^2 +3/4| + C $$
Thus, in conclusion,
$$ \int \frac{\cos(x)}{1+\sin^{3}(x)} \, dx = \frac{1}{3} \ln |1+ \sin x| + \frac{10}{9} \arctan \left( \frac{4}{3}\sin x-\frac{2}{3} \right) - \frac{1}{6} \ln \left| \left(\sin x+\frac{1}{2} \right)^2 +\frac{3}{4}\right| + C $$