Calculating Induced EMF in a Coil with Uniform Magnetic Field

  • Thread starter Thread starter Sir_Pogo
  • Start date Start date
  • Tags Tags
    Coil Emf
AI Thread Summary
To calculate the magnitude of the induced EMF in the copper wire, apply Faraday's Law, which states that EMF equals the rate of change of magnetic flux. In this scenario, the magnetic flux is constant, calculated as the product of the magnetic field strength and the area of the wire loop, while the number of turns (N) changes over time as the wire unrolls. The relationship between the unrolling speed and the number of turns can be established by considering how quickly the wire is being pulled off the roll. It's important to post homework questions in the appropriate forum to receive proper assistance. Understanding these principles is essential for solving the problem correctly.
Sir_Pogo
Messages
12
Reaction score
0
I have a homework problem where there is a long copper wire around a toilet paper roll that is placed in a uniform magnetic field. The axis of the roll is aligned with the field.
I am given the radius of the roll, strength of the field, and a velocity at which the wire is unrolled.
How do i calculate the magnitude of the EMF induced in the wire??
 
Physics news on Phys.org
How do you associate a speed to the unrolling?!? I don't understand.
Could you post the problem exactly as it it written please?

Btw - you posted in the wrong forum. Next time, please post in the appropriate sub-forum among those:

https://www.physicsforums.com/forumdisplay.php?f=152
 
Note that as it's said in Faraday's Law EMF is equal to d(N*magnetic_flux)/dt where N is a total amount of wire turns and magnetic_flux is per each one.

In your example your, magnetic_flux is const. and equal to BS=pi (r)^2 B. And only N changes in time. Try to think about dependence between N and time
 
What I have a lot of trouble understanding is... how do people with some sort of science education consistently misinterpret the sticky at the top of the forum that says 'Do not post your homework questions here.'? There are forums for that, but this is not one of them.
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top