Use of laplace to solve a differential equation

hallic
Messages
6
Reaction score
0
I was asked to use a laplace transform to solve d^2x/dt^2 - 3(dx/dt) - 10x = e^-t
with the initial conditions x(0) = 0 and x'(0) = 0

I got down to (s^2)x(s) - sx(0) - x'(0) - 3(sX(0) - x(0)) - 10X =1/(s+1)

I tried plugging in the initail conditions and didnt get the answer I was supposed to, think I have gone wrong somewhere if someone can help me out
 
Physics news on Phys.org
Got it wrong. That's:
s^{2}X(s)-sx_{0}-x'_{0}-3(sX(s)-x_{0})-10X(s)=1/(s+1)
With the boundary conditions, you get
X(s)=\frac{1}{(s+1)(s^{2}-3s-10)}
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top