Use of the term pair vs ordered pair

  • Thread starter Thread starter Werg22
  • Start date Start date
  • Tags Tags
    Pair Term
Werg22
Messages
1,431
Reaction score
1
Use of the term "pair" vs "ordered pair"

Why is it that authors use the term "pair" and "ordered pair" interchangeably and, maybe I'm mistaken, a little imprecisely? For example, in listing the field axioms, the language "for every pair x and y" is usually used. However, surly the author means "for every ordered pair x and y", otherwise, there is no need for the axiom of commutativity (neither for addition nor multiplication). Just something that has been bothering me.
 
Last edited:
Physics news on Phys.org


Actually, when I hear "pair" I have in mind something like: (a, b) which is ordered by default, i.e. (b, a) is something different. Presumably the authors you are generally referring to have the same "problem"?
 


"x and y" isn't an ordered pair, (x,y) would be an ordered pair.

What is bothering you about the phrase

"for every pair x,y we have xy=yx"

How is this axiom of commutativity redundant?
 


I was under the impression that "pair" denoted a set of two objects (as opposed to "ordered pair" which denotes a set of two object in which order is important), therefore the pair x and y would be the same as the pair y and x. Defining addition and multiplication as functions assigning a unique x+y and xy to the pair "x and y" and then stating x+y=y+x or xy=yx is redundant; "x and y" is the same as "y and x" by the definition of a pair (as opposed to ordered pair), therefore x+y=y+x and xy=yx are implied at the outset and do not need to be stated as axioms.
 


The term pair just denotes two things that have labels x and y. This is just common usage of English, it is not some statement about a set with two elements. If it were it would also imply x=/=y as well. Given pair with *labels* x and y, we assert there is something denoted xy, again the labelling is important. If we change the role of labels, as you do, to get yx, it does not imply that yx=xy.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Back
Top