Using a power series to estimate a function

lindsaygilber
Messages
3
Reaction score
0
I'm having a problem with estimating a function using a power series... the problem is

Use the power series for f(x)= (5+x)^(1/3) to estimate 5.08^(1/3) correct to four decimal places.


I found all the derivatives of f(x) but I'm not sure how to make it into a power series or what form to use for a cubic root...
 
Physics news on Phys.org
I believe if you use a Taylor Series expansion(which I believe is a power series), you should be able to approximate it using this formula:

6c81bd7e1ffe0d67ce7a348f7fec25ea.png
 
thank you!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top