mrcleanhands
Homework Statement
Use \frac{\partial z}{\partial r}=\cos\theta\frac{\partial z}{\partial x}+\sin\theta\frac{\partial z}{\partial y}
and \frac{\partial z}{\partial\theta}=-r\sin\theta\frac{\partial z}{\partial x}+r\cos\theta\frac{\partial z}{\partial y} to show that
\frac{1}{r^{2}}\frac{\partial^{2}z}{\partial\theta^{2}}+\frac{1}{r} \frac{\partial z}{\partial r}=\sin^{2}\theta\frac{\partial^{2}z}{\partial x^{2}}-2\sin\theta\cos\theta\frac{\partial ^ {2}z}{\partial x \partial y}+\cos^{2}\theta\frac{\partial ^ {2}z}{\partial y^{2}}
Homework Equations
The Attempt at a Solution
<br /> \frac{\partial z}{\partial\theta}\frac{\partial z}{\partial\theta}=\frac{\partial z}{\partial\theta}(-r\sin\theta\frac{\partial z}{\partial x}+r\cos\theta\frac{\partial z}{\partial y})<br />
<br /> \frac{\partial^{2}z}{\partial\theta^{2}}=(-r\sin\theta\frac{\partial z}{\partial x}+r\cos\theta\frac{\partial z}{\partial y})(-r\sin\theta\frac{\partial z}{\partial x}+r\cos\theta\frac{\partial z}{\partial y})
<br /> \frac{\partial^{2}z}{\partial\theta^{2}}=r^{2}\sin^{2}\theta\frac{ \partial ^ {2}z}{\partial x^{2}}-2r^{2}\sin\theta\cos\theta\frac{\partial^{2}z}{\partial x\partial y}+r^{2}\cos^{2}\theta\frac{\partial^{2}z}{\partial y^{2}}
<br /> \frac{1}{r^{2}}\frac{\partial^{2}z}{\partial\theta^{2}}=\sin^{2}\theta\frac{\partial^{2}z}{\partial x^{2}}-2\sin\theta\cos\theta\frac{\partial^{2}z}{\partial x\partial y}+\cos^{2}\theta\frac{\partial^{2}z}{\partial y^{2}}
but \frac{1}{r}\frac{\partial z}{\partial r}=\frac{1}{r}\cos\theta\frac{\partial z}{\partial x}+\frac{1}{r}\sin\theta\frac{\partial z}{\partial y}
and if I add that I get:
\frac{1}{r^{2}}\frac{\partial^{2}z}{\partial\theta^{2}}+\frac{1}{r} \frac{ \partial z}{\partial r}=\sin^{2}\theta\frac{\partial^{2}z}{\partial x^{2}}-2\sin\theta\cos\theta\frac{\partial^{2}z}{\partial x\partial y}+\cos^{2}\theta\frac{\partial^{2}z}{\partial y^{2}}+\frac{1}{r}\cos\theta\frac{\partial z}{\partial x}+\frac{1}{r}\sin\theta\frac{\partial z}{\partial y} so somehow \frac{1}{r}\frac{\partial z}{\partial r}=\frac{1}{r}\cos\theta\frac{\partial z}{\partial x}+\frac{1}{r}\sin\theta\frac{\partial z}{\partial y} is supposed to be 0?
Last edited by a moderator: