Darth Frodo
- 211
- 1
Continuous Uniform MGF is M_{x}(z) = E(e^zx) = \frac{e^{zb} - e^{za}}{zb - za}
\frac{d}{dz}M_{x}(z) = E(X)
Using the Product Rule
\ U = e^{bz} - e^{az}
\ V = (zb - za)^{-1}
\ U' = be^{bz} - ae^{az}
\ V' = -1(zb - za)^{-2}(b - a)
\frac{dM}{dz} = UV' + VU'
\frac{dM}{dz} = (e^{bz} - e^{az})(-1(zb - za)^{-2}(b - a)) + ((zb - za)^{-1})(be^{bz} - ae^{az}) evaluated at z = 1
\ (e^{b}-e^{a})(-1)(b - a)^{-2}(b - a) + (b - a)^{-1}(be^{b} - ae^{a})
\frac{e^{a} - e^{b} + be^{b} - ae^{a} }{b - a}
The answer is \frac{b + a}{2}
I'd really appreciate it if someone could tell me where I'm going wrong. Thanks.