Using Eigenvalues and Eigenvectors to solve Differential Equations

beckiey
Messages
1
Reaction score
0

Homework Statement



x1(t) and x2(t) are functions of t which are solutions of the system of differential equations

x(dot)1 = 4x1 + 3x2
x(dot)2 = -6x1 - 5x2

Express x1(t) and x2(t) in terms of the exponential function, given that x1(0) = 1 and x2(0) = 0

The Attempt at a Solution



I've already put this into matrix form,

4...3
-6 -5

and then

(4-λ) 3
-6 (-5-λ)

To find that the eigenvalues are -2 and 1, and then that the eigenvectors are

(a
-2a)

and

(b
-b)

but after that I'm completely stuck. I know you get into constants and such but I just can't remember how to continue.
 
Physics news on Phys.org
beckiey said:

Homework Statement



x1(t) and x2(t) are functions of t which are solutions of the system of differential equations

x(dot)1 = 4x1 + 3x2
x(dot)2 = -6x1 - 5x2

Express x1(t) and x2(t) in terms of the exponential function, given that x1(0) = 1 and x2(0) = 0

The Attempt at a Solution



I've already put this into matrix form,

4...3
-6 -5

and then

(4-λ) 3
-6 (-5-λ)

To find that the eigenvalues are -2 and 1, and then that the eigenvectors are

(a
-2a)

and

(b
-b)

but after that I'm completely stuck. I know you get into constants and such but I just can't remember how to continue.
You can write (a, -2a)= a(1, -2) and (b, -b) as b(1, -1). Use those vectors as columns in a matrix:
A= \begin{bmatrix}1 & 1\\ -2 & -1\end{bmatrix}
and write [begin]A^{-1}[/itex] as its inverse matrix.
Then
A^{-1}\begin{bmatrix}1 & 1 \\ -2 & -1\end{bmatrix}A= \begin{bmatrix}-2 & 0\\ 0 & 1\end{bmatrix}

Writing your differential equation as differential equation as dY/dt= BY, We can multiply on both sides by A^{-1} and write Y as Y= AX so that [math]X= A^{-1}Y[/math] and the differential equation becomes d(A^{-1}Y)/dt= dX/dt= A^{-1}BY= (A^{-1}BA) which is just
\frac{dX}{dt}= \begin{bmatrix}-2 & 0 \\ 0 & 1\end{bmatrix}X
which is easy to solve. Once you have X, then, of course, Y= AX.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top