Using Gauss' Law on a Solid Annular Sphere

deathsink
Messages
2
Reaction score
0

Homework Statement



Imagine a solid, annular sphere. At the center of the hollow is a point charge +Q. The inner radius of the sphere is r0, and the outer radius is R. Assume the charge density p = p0/r (for r0 < r < R). Calculate using the integral form of Gauss's Law the electric field in all three regions:

0< r < r0
r0< r < R
R < r < infinity

Homework Equations



[PLAIN]http://www.forkosh.dreamhost.com/mimetex.cgi?%5Coint_S%5Cmathbf%7BE%7D%5Ccdot%7Bd%7D%5Cmathbf%7BA%7D=%5Cfrac%7BQ%7D%7B%5Cepsilon_0%7D=%5Cfrac%7B1%7D%7B%5Cepsilon_0%7D%5Cint_V%5Crho(%5Cmathbf%7Br%7D)%5C,dV

The Attempt at a Solution



for 0 < r < r0

E(4 Pi r^2) = 1/e0 (p0/r)(4/3 pi r^3)
=> E = (1/3e0)p0

But this can't be right for because all of the r's cancel out. And since I can't do this one, I know I can't do the rest.

Thank you.
 
Last edited by a moderator:
Physics news on Phys.org
For this first interval, where 0 < r < r0, the enclosed charge is just +Q, the charge at the center of the hollow.
 
gneill said:
For this first interval, where 0 < r < r0, the enclosed charge is just +Q, the charge at the center of the hollow.

When you take the surface integral of E*dA, do you get E*(area of sphere) which you then need to divide through by?

I have not had Vector Calculus, so a lot of the notation is odd to me.

Edit: I got E=\frac{Q}{4\pi \epsilon _0r_0{}^2} by dividing through by the area of a sphere.
 
Last edited:
Your E dot DA in the surface integral turns into E da, because the field is radially directed and so the dot product is just the product of the magnitudes of the vectors E and dA (which is normal to the surface over which you're integrating).

So, at radius r you end up with

E(4 π r2) = Q/ε0

Or, rearranged,

E = Q/(4 π ε0 r2)

Which should look familiar.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top