Using Lagrange to solve rotating parabolic motion and equilibrium

relativespeak
Messages
9
Reaction score
0

Homework Statement



Consider a bead of mass m sliding without friction on a wire that is bent in the shape of a parabola and is being spun with constant angular velocity w about its vertical axis. Use cylindrical polar coordinates and let the equation of the parabola be z = kp2. Write down the Lagrangian in terms of p as the generalized coordinate. Find the equation of motion of the bead and determine whether there are positions of equilibrium, that is, values of p at which the bead can remain fixed, without sliding up or down the spinning wire. Discuss the stability of any equilibrium positions you find.

Homework Equations

L=E-U
v1=pw
v2=dp/dt
v3=2kp(dp/dt)
U=mgkp^2
E=mv^2/2

The Attempt at a Solution



I found the equation of motion using the lagrangian, which matched the answer in the back of the book. I just don't know how to use Lagrance to find equilibrium, and I've tried several things such as setting d2p/dt2=0 and d2U/dp2=0.The equation of motion is: (g=accel. due to gravity)

pw2-4k2p(dp/dt)2-2kgp=(d2p/dt2)(1+4k2p2
 
Last edited:
Physics news on Phys.org
If the bead remains fixed, what can be said about the derivatives of its polar radius?
 
dp/dt=0, d2p/dt2=0

so equil. occurs when w2=2kg, or when p=0. Is that right? And then how can I find which is stable/unstable?
 
Have you studied any equilibrium conditions/criteria?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top