Using perturbation to calculate first order correction

Leechie
Messages
19
Reaction score
2

Homework Statement


I'm trying to evaluate the following integral to calculate a first-order correction:
$$\int_0^\infty R_{nl}(r)^* \delta \hat {\mathbf H} R_{nl}(r) r^2 dr$$
The problem states that ##b## is small compared to the Bohr radius ##a_o##

Homework Equations


I've been given:
$$R_{nl}(r)=\left( \frac {1} {a_0} \right)^{3/2} 2 e^{-r/a_0}$$ $$\int_0^x e^{-u} du = 1 - e^{-x} $$ $$\int_0^x u e^{-u} du = 1 - e^{-x} - xe^{-x} $$
And I've calculated ##\delta \hat {\mathbf H} ## to be
$$\delta \hat {\mathbf H} = -\frac {e^2} {4 \pi \varepsilon_0} \left( \frac {b} {r^2} - \frac 1 r \right)$$

The Attempt at a Solution


So far I've got:
$$E_1^{(1)} = - \frac {e^2} {4 \pi \varepsilon_0 a_0^3} \left( \int_0^b b e^{ - \frac {2r} {a_0} } dr - \int_0^b r e^{ - \frac {2r} {a_0} } dr \right) $$
And when I use the integrals given I get:
$$E_1^{(1)} = - \frac {e^2} {4 \pi \varepsilon_0 a_0^3} \left( \frac {a_0b} {2} \left(1-e^{-b} \right) - \frac {a_0^2} {4} \left(1-e^{-b}-be^{-b} \right) \right) $$
Could someone tell me if I've got this right so far?
Thanks
 
Physics news on Phys.org
Is your integral in section 1 missing a factor of 4π?

In the first equation in section 3 I think you've lost the factor of 2 from each Rnl(r). And when you put in the limits of integration, the exponents in your final equation should be -2b/a0.

It's not clear to me what the perturbation is supposed to be; so I don't know if your δH is correct or if you should be integrating over r from 0 to b; but if all that is okay, you're basically on the right track.
 
Last edited:
  • Like
Likes Leechie
Thanks for your help John.

I don't think its missing the factor 4##\pi##. The original state is given as ##\psi_{1,0,0} = R_{nl} \left( r \right) Y_{lm}\left( \theta, \phi \right) ##, and I made it that the spherical harmonics are normalized in the state: ##Y_{0,0}\left( \theta, \phi \right) = \frac 1 {\sqrt {4 \pi}}##.

Ah, I can see it now, the missing factor 2 and I've forgotten to change the exponents back after substitution. Thanks for pointing those out.

I confident the perturbation is correct and the question I've been given involves calculating the first-order correction for a modified Coulomb model of a hydrogen atom where ##V\left(r\right)=- \frac {e^2b^2} {4 \pi \varepsilon_0 r^2} ## where ## 0 \lt r \leq b ## and ##V\left(r\right)=- \frac {e^2} {4 \pi \varepsilon_0 r} ## where ## r \gt b##. So I think I have to integral from ##0## to ##b##.

I'm quite new to this forum and I'm really amazed at how helpful and friendly everyone is here. I don't know where I'd be without PF!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top