Using the Divergence Theorem to Prove Green's Theorem

B3NR4Y
Gold Member
Messages
170
Reaction score
8

Homework Statement


Prove Green's theorem
<br /> \int_{\tau} (\varphi \nabla^{2} \psi -\psi\nabla^{2}\varphi)d\tau = \int_{\sigma}(\varphi\nabla\psi<br /> -\psi\nabla\varphi)\cdot d\vec{\sigma}

Homework Equations


div (\vec{V})=\lim_{\Delta\tau\rightarrow 0} \frac{1}{\Delta\tau} \int_{\sigma} \vec{V} \cdot d\vec{\sigma}
is the divergence, and Gauss's divergence theorem says
\int_{\tau} div(\vec{V}) d\tau=\int_{\sigma} V \cdot d\vec{\sigma}
div(\vec{V})=\nabla \cdot \vec{V}

The Attempt at a Solution


The first thing I'll do is apply Gauss's Divergence theorem to the vectors \vec{A} = \varphi\nabla\psi and B=\psi\nabla\varphi
Applied to A:
\nabla \cdot \vec{A}=\nabla \cdot \varphi\nabla\psi =\varphi \nabla^{2} \psi \rightarrow \int_{\tau} div(\vec{A}) d\tau= \int_{\tau} \varphi \nabla^{2} \psi \, d\tau = \int_{\sigma} \varphi \nabla\psi \,\cdot d\vec{\sigma}

Applied to B
\nabla \cdot \vec{B}=\nabla \cdot \psi\nabla\varphi =\psi \nabla^{2} \varphi \rightarrow \int_{\tau} div(\vec{B})\, d\tau= \int_{\tau} \psi \nabla^{2} \varphi \, d\tau = \int_{\sigma} \psi \nabla\varphi \,\cdot d\vec{\sigma}

And there is where I am stuck. These look like they're supposed to, but I am not sure if I'm allowed to subtract them to get Green's Theorem or if I am supposed to do something else.
 
Physics news on Phys.org
B3NR4Y said:

Homework Statement


Prove Green's theorem
<br /> \int_{\tau} (\varphi \nabla^{2} \psi -\psi\nabla^{2}\varphi)d\tau = \int_{\sigma}(\varphi\nabla\psi<br /> -\psi\nabla\varphi)\cdot d\vec{\sigma}

Homework Equations


div (\vec{V})=\lim_{\Delta\tau\rightarrow 0} \frac{1}{\Delta\tau} \int_{\sigma} \vec{V} \cdot d\vec{\sigma}
is the divergence, and Gauss's divergence theorem says
\int_{\tau} div(\vec{V}) d\tau=\int_{\sigma} V \cdot d\vec{\sigma}
div(\vec{V})=\nabla \cdot \vec{V}

The Attempt at a Solution


The first thing I'll do is apply Gauss's Divergence theorem to the vectors \vec{A} = \varphi\nabla\psi and B=\psi\nabla\varphi
Applied to A:
\nabla \cdot \vec{A}=\nabla \cdot \varphi\nabla\psi =\varphi \nabla^{2} \psi \rightarrow \int_{\tau} div(\vec{A}) d\tau= \int_{\tau} \varphi \nabla^{2} \psi \, d\tau = \int_{\sigma} \varphi \nabla\psi \,\cdot d\vec{\sigma}

Applied to B
\nabla \cdot \vec{B}=\nabla \cdot \psi\nabla\varphi =\psi \nabla^{2} \varphi \rightarrow \int_{\tau} div(\vec{B})\, d\tau= \int_{\tau} \psi \nabla^{2} \varphi \, d\tau = \int_{\sigma} \psi \nabla\varphi \,\cdot d\vec{\sigma}

And there is where I am stuck. These look like they're supposed to, but I am not sure if I'm allowed to subtract them to get Green's Theorem or if I am supposed to do something else.

Why do you claim that ##\nabla \cdot (\varphi \nabla \psi) = \psi \nabla^2 \varphi##? Have you proved it?
 
Ray Vickson said:
Why do you claim that ##\nabla \cdot (\varphi \nabla \psi) = \psi \nabla^2 \varphi##? Have you proved it?
<br /> \begin{align*}<br /> \nabla \cdot \psi \nabla \varphi =\\<br /> \nabla \cdot \psi &lt;\partial_1 \varphi, \partial_2 \varphi, \partial_3 \varphi&gt; =\\<br /> \nabla \cdot &lt;\psi \partial_1 \varphi,\psi \partial_2 \varphi, \psi\partial_3 \varphi&gt; =\\ \psi\partial_{1}^{2}\varphi + \psi\partial_{2}^{2}\varphi + \psi \partial_{3}^{2}\varphi=\\<br /> \psi (\partial_{1}^{2}\varphi + \partial_{2}^{2}\varphi + \partial_{3}^{2}\varphi)=\\<br /> \psi\nabla^{2}\varphi<br /> \end{align*}<br />

My logic may be wrong, but here's what I had written. I also "proved" the dot product is distributive, so I could use that for this problem.

<br /> \begin{align*} (\vec{A}-\vec{B})\cdot \vec{C}=\vec{A}\cdot\vec{C}-\vec{B}\cdot\vec{C} \rightarrow \\ \vec{A}-\vec{B}=a_{i}-b_{i} \rightarrow https://www.physicsforums.com/file://\\(\vec{A}-\vec{B})\cdot \vec{C}= (a_{i}-b_{i})c_{i} \, ; \, \, \\\vec{A}\cdot\vec{C}-\vec{B}\cdot\vec{C} = a_{i}c_{i}-b_{i}c_{i} = (a_{i}-b_{i})c_{i} = (\vec{A}-\vec{B})\cdot \vec{C}<br /> \end{align*}<br />

Therefore I can use this to subtract the two integrals I got and boom, green's theorem?
 
Last edited by a moderator:
B3NR4Y said:
<br /> \begin{align*}<br /> \nabla \cdot \psi \nabla \varphi =\\<br /> \nabla \cdot \psi &lt;\partial_1 \varphi, \partial_2 \varphi, \partial_3 \varphi&gt; =\\<br /> \nabla \cdot &lt;\psi \partial_1 \varphi,\psi \partial_2 \varphi, \psi\partial_3 \varphi&gt; =\\ \psi\partial_{1}^{2}\varphi + \psi\partial_{2}^{2}\varphi + \psi \partial_{3}^{2}\varphi=\\<br /> \psi (\partial_{1}^{2}\varphi + \partial_{2}^{2}\varphi + \partial_{3}^{2}\varphi)=\\<br /> \psi\nabla^{2}\varphi<br /> \end{align*}<br />

My logic may be wrong, but here's what I had written.

Are you assuming ##\psi## is a constant? If not don't you have to differentiate it too? Use the product rule.
 
B3NR4Y said:
<br /> \begin{align*}<br /> \nabla \cdot \psi \nabla \varphi =\\<br /> \nabla \cdot \psi &lt;\partial_1 \varphi, \partial_2 \varphi, \partial_3 \varphi&gt; =\\<br /> \nabla \cdot &lt;\psi \partial_1 \varphi,\psi \partial_2 \varphi, \psi\partial_3 \varphi&gt; =\\ \psi\partial_{1}^{2}\varphi + \psi\partial_{2}^{2}\varphi + \psi \partial_{3}^{2}\varphi=\\<br /> \psi (\partial_{1}^{2}\varphi + \partial_{2}^{2}\varphi + \partial_{3}^{2}\varphi)=\\<br /> \psi\nabla^{2}\varphi<br /> \end{align*}<br />

My logic may be wrong, but here's what I had written. I also "proved" the dot product is distributive, so I could use that for this problem.

<br /> \begin{align*} (\vec{A}-\vec{B})\cdot \vec{C}=\vec{A}\cdot\vec{C}-\vec{B}\cdot\vec{C} \rightarrow \\ \vec{A}-\vec{B}=a_{i}-b_{i} \rightarrow https://www.physicsforums.com/file://\\(\vec{A}-\vec{B})\cdot \vec{C}= (a_{i}-b_{i})c_{i} \, ; \, \, \\\vec{A}\cdot\vec{C}-\vec{B}\cdot\vec{C} = a_{i}c_{i}-b_{i}c_{i} = (a_{i}-b_{i})c_{i} = (\vec{A}-\vec{B})\cdot \vec{C}<br /> \end{align*}<br />

Therefore I can use this to subtract the two integrals I got and boom, green's theorem?

Essentially, part of what you claim is that
\frac{d}{dx} \left( f(x) \frac{dg(x)}{dx} \right) = f(x) \frac{d^2 g(x)}{dx^2}
Do you honestly believe that?
 
Last edited by a moderator:
Oh, I'm dumb.
<br /> \begin{align*}<br /> \nabla \cdot \vec{A} &amp;= \nabla \cdot \psi \nabla\varphi\\<br /> &amp;=\nabla \cdot \psi &lt;\partial_{1}\varphi \, , \, \partial_{2} \varphi \, , \, \partial_3\varphi&gt;\\<br /> &amp;=\nabla \cdot &lt;\psi\partial_{1}\varphi \, , \, \psi\partial_{2} \varphi \, , \, \psi\partial_3\varphi&gt;\\<br /> &amp;=(\partial_{1}\psi \, \partial_{1}\varphi + \psi \partial_{1}^2 \varphi)+(\partial_{2}\psi \, \partial_{2}\varphi + \psi \partial_{2}^2 \varphi)+(\partial_{3}\psi \, \partial_{3}\varphi + \psi \partial_{3}^2 \varphi)\\<br /> &amp;=\partial_{i}\psi\partial_{i}\varphi+\psi\partial_{i}^2 \varphi \\<br /> &amp;=\nabla\psi \cdot \nabla \psi +\psi\nabla^2\varphi<br /> <br /> \end{align*}<br />

And for B:
<br /> \begin{align*}<br /> \nabla \cdot \vec{B} &amp;= \nabla \cdot \varphi \nabla\psi\\<br /> &amp;=\nabla \cdot \varphi &lt;\partial_{1}\psi \, , \, \partial_{2} \psi \, , \, \partial_3\psi&gt;\\<br /> &amp;=\nabla \cdot &lt;\varphi\partial_{1}\psi \, , \, \varphi\partial_{2} \psi \, , \, \varphi\partial_3\psi&gt;\\<br /> &amp;=(\partial_{1}\varphi \, \partial_{1}\psi + \varphi \partial_{1}^2 \psi)+(\partial_{2}\psi \, \partial_{2}\psi + \varphi \partial_{2}^2 \psi)+(\partial_{3}\varphi \, \partial_{3}\psi + \varphi \partial_{3}^2 \psi)\\<br /> &amp;=\partial_{i}\varphi\partial_{i}\psi+\varphi\partial_{i}^2 \psi \\<br /> &amp;=\nabla\varphi \cdot \nabla \psi +\varphi\nabla^2\psi<br /> <br /> \end{align*}<br />

And therefore the integrals I had before from Gauss's Divergence Theorem are
<br /> \begin{align*} <br /> A\rightarrow &amp;\int_\tau (\nabla\psi \cdot \nabla \varphi +\psi\nabla^2\varphi) \, d\tau = \int_{\sigma} \psi\nabla\varphi \cdot d \vec{\sigma} \\<br /> B\rightarrow &amp;\int_\tau (\nabla\varphi \cdot \nabla \psi +\varphi\nabla^2\psi) \, d\tau = \int_{\sigma} \varphi\nabla\psi \cdot d \vec{\sigma}<br /> <br /> \end{align*}<br />

and THEN I subtract, the dot product part at the beginning cancels and bam I have green's theorem?
 
B3NR4Y said:
Oh, I'm dumb.
<br /> \begin{align*}<br /> \nabla \cdot \vec{A} &amp;= \nabla \cdot \psi \nabla\varphi\\<br /> &amp;=\nabla \cdot \psi &lt;\partial_{1}\varphi \, , \, \partial_{2} \varphi \, , \, \partial_3\varphi&gt;\\<br /> &amp;=\nabla \cdot &lt;\psi\partial_{1}\varphi \, , \, \psi\partial_{2} \varphi \, , \, \psi\partial_3\varphi&gt;\\<br /> &amp;=(\partial_{1}\psi \, \partial_{1}\varphi + \psi \partial_{1}^2 \varphi)+(\partial_{2}\psi \, \partial_{2}\varphi + \psi \partial_{2}^2 \varphi)+(\partial_{3}\psi \, \partial_{3}\varphi + \psi \partial_{3}^2 \varphi)\\<br /> &amp;=\partial_{i}\psi\partial_{i}\varphi+\psi\partial_{i}^2 \varphi \\<br /> &amp;=\nabla\psi \cdot \nabla \psi +\psi\nabla^2\varphi<br /> <br /> \end{align*}<br />

And for B:
<br /> \begin{align*}<br /> \nabla \cdot \vec{B} &amp;= \nabla \cdot \varphi \nabla\psi\\<br /> &amp;=\nabla \cdot \varphi &lt;\partial_{1}\psi \, , \, \partial_{2} \psi \, , \, \partial_3\psi&gt;\\<br /> &amp;=\nabla \cdot &lt;\varphi\partial_{1}\psi \, , \, \varphi\partial_{2} \psi \, , \, \varphi\partial_3\psi&gt;\\<br /> &amp;=(\partial_{1}\varphi \, \partial_{1}\psi + \varphi \partial_{1}^2 \psi)+(\partial_{2}\psi \, \partial_{2}\psi + \varphi \partial_{2}^2 \psi)+(\partial_{3}\varphi \, \partial_{3}\psi + \varphi \partial_{3}^2 \psi)\\<br /> &amp;=\partial_{i}\varphi\partial_{i}\psi+\varphi\partial_{i}^2 \psi \\<br /> &amp;=\nabla\varphi \cdot \nabla \psi +\varphi\nabla^2\psi<br /> <br /> \end{align*}<br />

And therefore the integrals I had before from Gauss's Divergence Theorem are
<br /> \begin{align*}<br /> A\rightarrow &amp;\int_\tau (\nabla\psi \cdot \nabla \varphi +\psi\nabla^2\varphi) \, d\tau = \int_{\sigma} \psi\nabla\varphi \cdot d \vec{\sigma} \\<br /> B\rightarrow &amp;\int_\tau (\nabla\varphi \cdot \nabla \psi +\varphi\nabla^2\psi) \, d\tau = \int_{\sigma} \varphi\nabla\psi \cdot d \vec{\sigma}<br /> <br /> \end{align*}<br />

and THEN I subtract, the dot product part at the beginning cancels and bam I have green's theorem?

Sounds much better.
 
Thank you both for your help, if it weren't for you guys I would have just subtracted my two original equations and gotten what looks right, but is a wrong answer. And would have been befuddled when I got a bad grade (most of the time we don\t get our assignments back despite the class only having about 13 students.)
 
Back
Top