Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Usual metric

  1. Nov 7, 2008 #1
    "Usual metric"

    So I had to solve a problem proving that the antipodal mapping on the sphere is an isometry. However, someone told me that the antipodal mapping is an isometry on the "usual metric" on the sphere, and in particular, the antipodal mapping is not an isometry for any metric on the sphere. While this makes intuitive sense, why does do Carmo not mention it in the question? The question says:

    "Prove that the antipodal mapping A: S^n --> S^n given by A(p) = -p is an isometry of S^n"

    He doesn't say anything about using the "usual metric" sphere. Is it just obvious? Should I always suppose that do Carmo is referring to the "usual metric"?
  2. jcsd
  3. Nov 8, 2008 #2


    User Avatar
    Staff Emeritus
    Science Advisor

    Re: "Usual metric"

    Well, I can't speak for Carmo but, yes, for problems in Rn or subsets or Rn, as here, unless a different metric is specified, assume the usual metric.
    Last edited: Nov 8, 2008
  4. Nov 8, 2008 #3


    User Avatar
    Science Advisor
    Homework Helper
    2015 Award

    Re: "Usual metric"

    is your friend given to habitual "one -ups manship"?

    next time he says something about zero loci, ask if he means them to have their induced reduced scheme structure?
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Usual metric
  1. Metric/metric tensor? (Replies: 1)

  2. Induced metrics (Replies: 6)

  3. Funky Metric (Replies: 1)

  4. Admitting a metric. (Replies: 3)