I Validity of proof of Cauchy-Schwarz inequality

HaniZaheer
Messages
4
Reaction score
0
Proof: If either x or y is zero, then the inequality |x · y| ≤ | x | | y | is trivially correct because both sides are zero.
If neither x nor y is zero, then by x · y = | x | | y | cos θ,
|x · y|=| x | | y | cos θ | ≤ | x | | y |
since -1 ≤ cos θ ≤ 1

How valid is this a proof of the Cauchy-Schwarz inequality?
 
Physics news on Phys.org
It looks good as long as x · y = | x | | y | cos θ is given by definition or is already proven. (It's good form to indicate "by definition" or "by Lemma xxx", etc.)
 
  • Like
Likes HaniZaheer
Alright, thanks a lot
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

Back
Top