Rewrite the given equation as a cubic equation, we see that:
$k^3-2k^2-8k+8=0$
Let $k=\dfrac{2+4\sqrt{7}x}{3}$, the above cubic equation becomes $4x^4-3x=-\dfrac{1}{2\sqrt{7}}$.
Let $x=\cos \theta$, $4x^4-3x=-\dfrac{1}{2\sqrt{7}}$ translates into $\cos 3\theta=-\dfrac{1}{2\sqrt{7}}$ and this gives
$x=\cos\left(\dfrac{1}{3}\arccos \left(-\dfrac{1}{2\sqrt{7}}\right)+\dfrac{2n\pi}{3}\right)$, where $n\in\{0,\,1,\,2\}$
So
$\dfrac{2k^2}{k-1}=\dfrac{8(28\cos^2\left(\dfrac{1}{3}\arccos \left(-\dfrac{1}{2\sqrt{7}}\right)+\dfrac{2n\pi}{3}\right)+4\sqrt{7}\cos \left(\dfrac{1}{3}\arccos \left(-\dfrac{1}{2\sqrt{7}}\right)+\dfrac{2n\pi}{3}\right)+1}{3\left(4\sqrt{7}\cos \left(\dfrac{1}{3}\arccos \left(-\dfrac{1}{2\sqrt{7}}\right)+\dfrac{2n\pi}{3}\right)-1 \right)}$,
where $n\in\{0,\,1,\,2\}$
Compute the value of the targeted expression with calculator, by first taking $n=0$ and then replace it by $n=1$ and next $n=2$ we get three different values for $\dfrac{2k^2}{k-1}$:
$9.9758,\,-3.5603,\,-14.4155$