pawprint said:
There is only one (non-mathematical) point from the entire thread that I have not truly grasped. I accept the concept that, as almost infinite energy is required to hover near the event horizon, gravity can be inferred to become infinite at the EH.
"Gravity" in the sense of "the proper acceleration required to hover at a constant radius". But there are other senses of "gravity" that are *not* infinite at the horizon, as several posters have pointed out. Curvature in the sense of the Riemann curvature tensor, for example, or various scalars derived from it, is perfectly finite at the horizon, but becomes infinite at the singularity.
The key thing you appear to be struggling with is that you are trying to find one single "thing" that can be thought of as "gravity". There isn't. "Gravity" encompasses multiple phenomena, and they don't all "go together" the way one's intuition thinks they ought to. But our intuition is based on a very narrow set of conditions where speeds are small and all aspects of "gravity" are very weak, so they all kind of "look the same". GR has to handle a much wider range of cases, where "gravity" gets a lot stronger and the various phenomena associated with it start acting differently (like proper acceleration vs. curvature at the black hole's horizon).
pawprint said:
My problem may simply be due to the impossibility of representing spacetime in three dimensions.
This is a problem, yes, but I would put it slightly differently. I think you are having problems because you are trying to deduce *everything* about gravity from a single diagram. To really get a complete picture, you have to look at multiple representations of the spacetime, each of which picks out a different aspect of it. Then you have to put all the different viewpoints together and understand how they interact. The page I linked to earlier, showing diagrams in Finkelstein, Kruskal, and Penrose coordinates in addition to Schwarzschild coordinates, is an excellent resource for doing that.
pawprint said:
My memory is that not many years ago such diagrams of black holes showed an infinitely deep gravity well at the singularity. However now a search reveals the vast majority of such images to resemble that shown here, with almost flat bottoms. Does this represent a paradigm shift or just lazy artists?
Probably lazy artists if they are really intending to show "flat bottoms". But I suspect that what look to you like "flat bottoms" are really infinitely deep wells that just get cut off by the edge of the drawing.
It's worth noting, however, that the "infinitely deep well" idea has problems too. The underlying issue is the temptation to think of the singularity as a "place"--a location "in space". In reality, the singularity is a *spacelike surface*--which means that the closest thing to it in our intuitions is an *instant of time*--a "slice" of the universe (more precisely, of the portion of the universe that's behind the horizon) at a particular time. You can't represent "the universe at an instant of time", or "a portion of the universe at an instant of time" as a spatial point on a spatial diagram. It should really be a *separate* "spatial diagram" all its own.
If you look at the Kruskal or Penrose diagrams on the page I linked to earlier, you will see that they make this obvious: the singularity is a hyperbola that goes from left to right in the Kruskal diagram, and it is a horizontal line in the Penrose diagram. (This is also why we say that the singularity is "in the future", and why it's impossible to avoid the singularity once you're inside the horizon--because you can't avoid moving into the future.)