Value of g near a black hole (re-visited)

  • Context: Graduate 
  • Thread starter Thread starter pawprint
  • Start date Start date
  • Tags Tags
    Black hole Hole Value
Click For Summary
SUMMARY

The discussion centers on the behavior of gravitational acceleration (g) near simple, non-rotating, uncharged black holes, specifically regarding its asymptotic nature as one approaches the event horizon (EH) and singularity. Participants agree that gravity approaches infinity at the singularity, while the EH is defined as the radius where escape velocity equals the speed of light (c). The conversation emphasizes that a purely Newtonian approach is inadequate for calculations near black holes, particularly within the Schwarzschild radius. The consensus is that gravity's behavior is coordinate-dependent and requires a relativistic framework for accurate understanding.

PREREQUISITES
  • Understanding of general relativity (GR) principles
  • Familiarity with Schwarzschild radius and event horizon concepts
  • Knowledge of gravitational acceleration and its mathematical representation
  • Basic comprehension of Newtonian gravity limitations in relativistic contexts
NEXT STEPS
  • Study the Schwarzschild metric in detail to understand black hole properties
  • Learn about tidal gravity and its implications in general relativity
  • Explore the concept of proper time and its significance in black hole physics
  • Investigate the differences between Newtonian and relativistic gravity calculations
USEFUL FOR

Astronomers, physicists, and students of general relativity seeking to deepen their understanding of black hole dynamics and gravitational effects near singularities.

  • #31
PAllen said:
Warped is a poetic term, not physics or mathematics. The accurate statement is: there is a curvature singularity inside a black hole horizon. There is no singular or extreme local behavior at the horizon of a sufficiently large black hole. Time flowing backwards or downwards is simply nonsense, not part of GR at all. Where are you getting this from? Probably you are reading nonsense and believing it is an accurate portrayal of GR.

Not to single them out, but stuff like this as well as the books of people like Michio Kaku and Brian Green are confusing or conflicting.
pervect said:
and it'd approach stopping as the stationary clock got closer and closer to the event horizon.

pervect said:
There's no such thing as a stationary clock at the event horizon,
pervect said:
since the event horizon can be thought of as trapped light, any physical infalling clock, which is stationary in its own frame, will see the event horizon approaching it at the speed of light.
Naty1 said:
Can you explain what you think is 'hype'?
Here are two descriptions that reveal some of that 'character' of horizons: Kip Thorne says (Lecture in 1993 Warping Spacetime, at Stephan Hawking's 60th birthday celebration, Cambridge, England,)
The flow of time slows to a crawl near the horizon, and beneath the horizon time becomes so highly warped that it flows in a direction you would have thought was spacial: it flows downward towards the singularity. That downward flow, in fact, is why nothing can escape from a black hole. Everything is always drawn inexorably towards the future, and since the future inside a black hole is downward, away from the horizon, nothing can escape back upward, through the horizon.

I get that time slows relative to an observer as distortion increases, but just as with traveling at the speed of light, it seems like that should only happen asymtotically. Stopping? From an outside observer's calculations, the in-falling object should never reach the singularity and thus the black hole would never gain mass relative to the outside observer even though the in-falling object would hit the singularity and add to it's mass? And time flowing towards the future infinitely or what?
The gravitational or electric field of a black hole is suppose to be time-frame independent, so how would you measure a change in it originating from the singularity once mass added to it especially if you can't even observer an object crossing the event horizon?
 
Last edited:
Physics news on Phys.org
  • #32
questionpost said:
I get that time slows relative to an observer as distortion increases, but just as with traveling at the speed of light, it seems like that should only happen asymtotically. Stopping? From an outside observer's calculations, the in-falling object should never reach the singularity
Correct. More specifically, the observer will never be seen to cross the event horizon.

and thus the black hole would never gain mass relative to the outside observer even though the in-falling object would hit the singularity and add to it's mass?
False, see my post here: https://www.physicsforums.com/showpost.php?p=3771662&postcount=10
 
  • #33
questionpost said:
From an outside observer's calculations, the in-falling object should never reach the singularity and thus the black hole would never gain mass relative to the outside observer even though the in-falling object would hit the singularity and add to it's mass?

The infalling object doesn't have to reach the singularity to increase the black hole's mass. Actually, it doesn't even have to reach the horizon, strictly speaking. If you are orbiting the black hole at some radial coordinate r outside the horizon, you will see the effective mass of the black hole increase as soon as the infalling object falls inside your radius. (Strictly speaking, this is what you will see if the infalling object falls right by you on its way in; i.e., if its angular coordinates theta, phi are exactly the same as yours. If it falls at some other theta, phi, it may take time for the effect to propagate to you before you actually see an increase in mass.)

This is true because the gravity of the black hole (meaning, the perceived effects of gravity outside the horizon) doesn't actually come from "inside" the hole (meaning from inside the horizon). It comes from the past, from the collapsing matter that originally formed the hole. See this post (or the thread it is part of) for more:

https://www.physicsforums.com/showpost.php?p=3780798&postcount=24

An object of non-negligible mass falling into the hole works similarly; it contributes to the "mass" that is measured at a particular event in the exterior of the hole if the infalling object is anywhere in the past light cone of that event.

questionpost said:
The gravitational or electric field of a black hole is suppose to be time-frame independent,

It is true that the "black hole is frame-independent" in the sense that the presence of an event horizon in the spacetime is frame-independent; if it's there for any observer, it's there for all observers. But in order to say that the "field" is frame-independent, you must first define what you mean by "the field". There are aspects of it that are (in an appropriate sense) frame-independent, but there are others that are not. (I'm mainly talking about the gravitational field here.)

The spacetime that the hole is in is only time independent if the black hole never has anything fall into it. If something of non-negligible mass falls into the hole, the hole changes; the spacetime the hole is in is no longer time-dependent.
 
  • #34
questionpost said:
Not to single them out, but stuff like this as well as the books of people like Michio Kaku and Brian Green are confusing or conflicting.

Originally Posted by pervect View Post

and it'd approach stopping as the stationary clock got closer and closer to the event horizon.

Originally Posted by pervect View Post

There's no such thing as a stationary clock at the event horizon,

Originally Posted by pervect View Post

since the event horizon can be thought of as trapped light, any physical infalling clock, which is stationary in its own frame, will see the event horizon approaching it at the speed of light.
Originally Posted by Naty1 View Post

Can you explain what you think is 'hype'?
Here are two descriptions that reveal some of that 'character' of horizons: Kip Thorne says (Lecture in 1993 Warping Spacetime, at Stephan Hawking's 60th birthday celebration, Cambridge, England,)
The flow of time slows to a crawl near the horizon, and beneath the horizon time becomes so highly warped that it flows in a direction you would have thought was spacial: it flows downward towards the singularity. That downward flow, in fact, is why nothing can escape from a black hole. Everything is always drawn inexorably towards the future, and since the future inside a black hole is downward, away from the horizon, nothing can escape back upward, through the horizon. I get that time slows relative to an observer as distortion increases, but just as with traveling at the speed of light, it seems like that should only happen asymtotically. Stopping? From an outside observer's calculations, the in-falling object should never reach the singularity and thus the black hole would never gain mass relative to the outside observer even though the in-falling object would hit the singularity and add to it's mass? And time flowing towards the future infinitely or what?
The gravitational or electric field of a black hole is suppose to be time-frame independent, so how would you measure a change in it originating from the singularity once mass added to it especially if you can't even observer an object crossing the event horizon?

None of these are contradictory, though Thorne is at least misleading in an attempt a drama.

Let's take them one at a time:

A clock approaching the horizon appears to approach stopping ... from the point of view of an observer further away. That is all, nothing more. This says nothing about the behavior of the clock from its own point of view.

"There is no such thing as a stationary clock at the event horizon." Here, you are rather naturally confused by ambiguity in English language. Pervect is here referring to stationary in the sense of motionless relative to distant observers, not rate of time flow on a clock. The two senses of stationary juxtaposed this way lead to false perception of contradiction. Sorry about that. English is a ... <forum rules> sometimes.

Pervect's statement about the horizon moving at c past any infaller is simply true. To the infaller it simply appears as the light of prior infallers reaching them. Thus the moment they cross the horizon is the moment they can see all prior infallers. I don't see the tension with any other statements.

Now for Thorne. Unambiguously true is that the singularity is a point in time along an infaller's world line, not a spatial point. The infaller sees all prior infallers and all of the outside universe 'normally - except for frequency shift and lensing distortions' until they reach the singularity. They never see anyone else reach the singularity because they reach it (in time) before any light from someone else reaching it can get to them. Specifically, the last they see of any prior infaller is from some moments before that infaller reached the singularity.

Thorne's comments about "a direction you would have thought was spatial" and a "downwards direction" are misguided. The only one expecting this would be someone who interpreted coordinates according the letter used to name them rather than their physical characteristics. In standard Schwarzschild coordinates, the coordinate called 'r' is spacelike outside the horizon and timelike inside the horizon. This means nothing except that 'r' is a bad label for the coordinate inside the horizon. If you instead use the local Fermi-Normal coordinates of a infaller, all of this nonsense disappears.
 
  • #35
Nabeshin said:
Correct. More specifically, the observer will never be seen to cross the event horizon.
So then we could never tell when a black hole at least is about to gain mass. We shouldn't expect any changes of the black hole if we never see anything going into it, other than perhaps its velocity. Also, what's the point of saying time stops to us at the event horizon if we can just easily calculate how matter travels past the event horizon? Why so many debates if it's that simple?
Nabeshin said:
How does the event horizon, which is symmetrical to the singularity, expand before matter has reached the singularity? Wouldn't that imply the object and the singularity are the same object if they have the same gravitational field? Why does there even need to be a bulge that straightens out? It's just something with it's own little field that clearly doesn't have the same capabilities of a black hole, I don't see how it would effect the size event horizon unless it also had an escape velocity greater than light.
 
Last edited:
  • #36
questionpost said:
So then we could never tell when a black hole at least is about to gain mass. We shouldn't expect any changes of the black hole if we never see anything going into it, other than perhaps its velocity. Also, what's the point of saying time stops to us at the event horizon if we can just easily calculate how matter travels past the event horizon? Why so many debates if it's that simple?
There are no debates within GR (about these basic issues; of course there are about some issues). There is only difficulty understanding that time and simultaneity are observer dependent. "Time slows to a stop for an infaller" is a statement that should always be joined to: "from the point of view of a static observer further away; not from the point of view (for example) an infaller just ahead of a given infaller".
questionpost said:
How does the event horizon, which is symmetrical to the singularity, expand before matter has reached the singularity? Wouldn't that imply the object and the singularity are the same object if they have the same gravitational field?

How about some nice pictures:

http://www.black-holes.org/explore2.html

search, e.g., for merging event horizons.
 
Last edited:
  • #37
questionpost said:
How does the event horizon, which is symmetrical to the singularity, expand before matter has reached the singularity? Wouldn't that imply the object and the singularity are the same object if they have the same gravitational field?

Did you read my post #33? You are assuming that the "mass" of the black hole is somehow "located" at the singularity, and doesn't increase until the infalling object arrives there. That is false.
 
  • #38
PAllen said:
How about some nice pictures:

http://www.black-holes.org/explore2.html

search, e.g., for merging event horizons.

Yessss, more traffic for our website :P
 
  • #39
PAllen said:
None of these are contradictory, though Thorne is at least misleading in an attempt a drama.

Let's take them one at a time:

"There is no such thing as a stationary clock at the event horizon." Here, you are rather naturally confused by ambiguity in English language. Pervect is here referring to stationary in the sense of motionless relative to distant observers, not rate of time flow on a clock. The two senses of stationary juxtaposed this way lead to false perception of contradiction. Sorry about that. English is a ... <forum rules> sometimes.

Yes, sorry if this wasn't clear. A stationary observer is basically an observer with constant r, theta, and phi Schwazschild coodinates.

In order to qualify as an observer, his worldline must be timelike. (Which is another technial term from special relativity). An photon isn't an observer, for instance.

Thorne's comments about "a direction you would have thought was spatial" and a "downwards direction" are misguided. The only one expecting this would be someone who interpreted coordinates according the letter used to name them rather than their physical characteristics.
]

I don't see why you say it's misguided. Though I think it may be confusing the OP, because Thorne's approach isn't based on the "clock slowing" paradigm.

My basic impression is that the OP is stuck in a Newtonian view of absolute time, and is also interpreting the whole "clock slowing" down thing as some sort of scalar function that modifies how fast absolute time flows at a given position.

And this is just not compatible with special relativity at all (mostly because of the absolute time idea).

At the risk of possibly causing more confusion, Thorne's view is more like saying that the time doesn't really "stop" (as per the stopped time idea), it's just bent to point in a spatial direction.

In standard Schwarzschild coordinates, the coordinate called 'r' is spacelike outside the horizon and timelike inside the horizon. This means nothing except that 'r' is a bad label for the coordinate inside the horizon. If you instead use the local Fermi-Normal coordinates of a infaller, all of this nonsense disappears.
 
  • #40
PeterDonis said:
Did you read my post #33? You are assuming that the "mass" of the black hole is somehow "located" at the singularity, and doesn't increase until the infalling object arrives there. That is false.

Ok, when black holes merge, then I see how the event horizon increases, however I don't see how a *not* infinitely dense object does the same thing, so shouldn't the object first have to have an infinite density like the singularity in order to have an event horizon and then merge that event horizon with the black hole its falling into? And since it can only have an infinite density by merging with the singularity, shouldn't the even horizon not increase until then even if the gravitational pull does?

PAllen said:
"Time slows to a stop for an infaller" is a statement that should always be joined to: "from the point of view of a static observer further away; not from the point of view (for example) an infaller just ahead of a given infaller".
search, e.g., for merging event horizons.

Ok, then "why" does it stop just because it's at a boundary where the escape velocity happens to be light? Also, you said before that other escape velocities don't matter, so does that mean once inside the event horizon, even if I traveled 99% the speed of light away from the singularity, it wouldn't slow down my in-fall? It seems related to hypothetically traveling at the speed of light.
Why is that too? We can calculate what happens when you travel at the speed of light with an equation yet right next to it have another equation that says you can never travel at or faster than the speed of light, within the same theory known as GR.
 
Last edited:
  • #41
pervect said:
I don't see why you say it's misguided. Though I think it may be confusing the OP, because Thorne's approach isn't based on the "clock slowing" paradigm.
At the risk of possibly causing more confusion, Thorne's view is more like saying that the time doesn't really "stop" (as per the stopped time idea), it's just bent to point in a spatial direction.

Well, time pointing in a spatial direction is a non-sequitur. At any point in a manifold there is a light cone defining time like directions, light like directions, and space like directions. Any small region looks just like Minkowski space, including a region where the horizon is passing by at c. There is nothing spatial about a timelike direction inside an event horizon except that it is labeled r in some coordinate schemes. It's labeled U or V in Kruskal (depending on your convention). It's labeled t in local Fermi-Normal coordinates. I think it is genuinely misleading to attach significance to a letter used in interior Schwarzschild coordinates for what essentially are historic reasons.
 
Last edited:
  • #42
questionpost said:
Ok, then "why" does it stop just because it's at a boundary where the escape velocity happens to be light? Also, you said before that other escape velocities don't matter, so does that mean once inside the event horizon, even if I traveled 99% the speed of light away from the singularity, it wouldn't slow down my in-fall? It seems related to hypothetically traveling at the speed of light.
Why is that too? We can calculate what happens when you travel at the speed of light with an equation yet right next to it have another equation that says you can never travel at or faster than the speed of light, within the same theory known as GR.

Why? That's not really a question of physics. A distant observer would see a a clock slow and light red shift on approach to a neutron star. Approach to a horizon is the same thing only more extreme. Asymptotically stopping just reflects that force needed to escape becomes infinite on approach to horizon. This stoppage is only observed by someone remaining further away from the horizon. There is no stoppage for the infaller.

I don't know what you are referring to in claiming I said escape velocities don't matter. I don't know what you are going on about traveling at or faster than the speed of light. I keep repeating this is all nonsense.

The singularity is a point in time not in space. Once inside the horizon, you can shine a flashlight any direction, and fire bullets in any direction, but all light and any projectiles you fire, in any direction, move forward in time toward the singularity. Poetically, you can say the singularity is a point in time where space ceases to exist for you. (In fact, you will be subject to enormous (ultimately infinite) compression and stretching, but you can always define a tiny enough region where everything is momentarily normal - until the moment of reaching the singularity).
 
  • #43
The OP thanks you all. This has been a most interesting thread and I have achieved the desired 'intuitive' breakthrough that I was seeking. Just a few notes in special appreciation starting with post #16-

pervect said:
A stationary clock near a singularity would run slow when compared with another stationary clock that's far away from any singularity, and it'd approach stopping as the stationary clock got closer and closer to the event horizon.

There's no such thing as a stationary clock at the event horizon, however. In fact, any clock crossing the event horizon must be moving at the speed of light - or rather, since the event horizon can be thought of as trapped light, any physical infalling clock, which is stationary in its own frame, will see the event horizon approaching it at the speed of light.

This motion causes signficant SR effects. If you neglect the velocity effects, it would be correct to say that from the point of view of an infalling observer, a clock at infinity would run faster and faster, without bound, as one approached the event horizon,.

When you include the velocity effects, though, the clock at infinity doesn't run infinitely fast.

You will run into the usual special relativity (SR) issues associated with the twin paradox when you include the velocity effects - I'm not sure what yoru background is in SR.

I've been quite comfortable with the implications of SR for about 37 years now pervect. I like your analysis but you made an error in the first paragraph.

I won't quote quotes but I found the two in post #19 by Naty1 very helpful. In Post #20-

questionpost said:
...It doesn't even make sense that time would stop, because then how would anything ever reach the singularity to add to its mass?

questionpost has expressed the same thought that has been concerning me for a long time, and which prompted this thread. But I'm no longer concerned. The answer I have found from the many responses is that although observers see objects slow effectively to a stop before passing the event horizon, the observation is dependent not on a single effect (time dilation) as I had previously thought but also on gravitationally caused 'slowness of light' from the object back to the observer.

The same statement rephrased: Were an 'instantaneous' link available from the falling clock to a slave clock held by an observer, it would indeed show the falling clock to be slowing at a rate depending on the gravitational gradient of the particular black hole. BUT IT WOULD NOT SLOW TO ZERO at the event horizon. The appearance of this effect to an observer without a simultaneous link, while real enough, is caused by the slowness of light (or other EM signal) returning to the observer from the intense gravity field. The 'simultaneously' linked clock would only approach zero rate of change as it approached the singularity.

The clock itself behaves exactly as it would aboard a vessel approaching light speed, with all the same implications for local and distant observers. After all, although nothing can be seen to 'break' the speed of light this doesn't change the fact that an intrepid traveller accelerating at 1 g will subjectively do so after about three years.

As I have said before, I seek intuitive understanding without math. Of course I know that simultaneous links are thought to be impossible, and that infinite anythings are rare. Indeed the only infinite 'physical' thing I can think of is the depth of a gravity well in which sits a singularity.

Once again thanks to everybody who participated in this thread. You have settled demons which have been of growing concern to my intuition for some time.
 
  • #44
OP here again. Not having refreshed my browser I had missed this quoted post. I now must take issue with paragraph 1-
PAllen said:
...That's not really a question of physics. A distant observer would see a a clock slow and light red shift on approach to a neutron star. Approach to a horizon is the same thing only more extreme. Asymptotically stopping just reflects that force needed to escape becomes infinite on approach to horizon. This stoppage is only observed by someone remaining further away from the horizon. There is no stoppage for the infaller...

I now hold the view expressed in the previous post that the clock does not asymptotically stop at the event horizon, it only LOOKS as though it does...
 
  • #45
questionpost said:
Ok, when black holes merge, then I see how the event horizon increases, however I don't see how a *not* infinitely dense object does the same thing, so shouldn't the object first have to have an infinite density like the singularity in order to have an event horizon and then merge that event horizon with the black hole its falling into? And since it can only have an infinite density by merging with the singularity, shouldn't the even horizon not increase until then even if the gravitational pull does?

Your picture of a black hole is not an accurate one. Several issues:

(1) The "black hole" is not just the singularity. The term is used to refer to the entire region of spacetime inside the event horizon. When people talk about two black holes merging, they are talking about two regions inside event horizons merging into one region inside an event horizon.

(Strictly speaking, there is only a single event horizon, and only a single region of spacetime inside it; that region just happens to be shaped like a pair of trousers instead of a tube, so to speak.)

(2) A black hole is not "infinitely dense". The singularity itself can be thought of as "infinitely dense", but the singularity has no causal effect on anything else in the spacetime, so its characteristics are irrelevant for understanding what happens elsewhere.

(Strictly speaking, the singularity is not even "in" the spacetime--the spacetime itself "ends" at the singularity, meaning there are events arbitrarily close to the singularity but none actually "at" it.)

(3) The event horizon is defined "teleologically"--it is the boundary of the region of the spacetime (as above, there is only *one* such region, but it may be shaped like a pair of trousers instead of a tube) that cannot send light signals to "infinity" (strictly speaking, to "future null infinity"). That definition requires you to know the entire history of the spacetime to pin down exactly where the horizon is. So when an object of non-negligible mass falls into a black hole, the horizon starts to move outward from its old radius to its new radius even *before* the infalling object reaches it, because the horizon is defined in terms of where light signals go all the way into the infinite future. A light signal sent from outside the "old" horizon radius may still be trapped behind the new horizon even if it is sent *before* the infalling object reaches the "new" horizon radius--if it is sent a short enough time before, so that it doesn't have time to make it past the new horizon radius before the infalling object arrives.

Take a look at the diagrams on this page:

http://casa.colorado.edu/~ajsh/collapse.html

Particularly the Kruskal and Penrose diagrams of the star collapsing to a black hole. It may help to visualize what I'm saying above.
 
  • #46
PeterDonis said:
Take a look at the diagrams on this page:

http://casa.colorado.edu/~ajsh/collapse.html

Particularly the Kruskal and Penrose diagrams of the star collapsing to a black hole. It may help to visualize what I'm saying above.
That's a great page PeterDonis, and it entirely confirms my new paradigm.
 
  • #47
pawprint said:
OP here again. Not having refreshed my browser I had missed this quoted post. I now must take issue with paragraph 1-


I now hold the view expressed in the previous post that the clock does not asymptotically stop at the event horizon, it only LOOKS as though it does...

I don't understand what you disagree with, but a fact is that the whatever you say about a clock sitting in a dense planet or neutron star (gravitational time dilation and red shift) you must say the same thing about a clock hovering near the event horizon, because they are exactly, in every way, the same phenomenon in GR. Note that a clock hovering near the event horizon sees distant clocks going extremely fast. An infaller is different because (see Pervect's post a little earlier) because you have SR speed effects as well as gravitational time dilation.
 
  • #48
PAllen said:
I don't understand what you disagree with, but a fact is that the whatever you say about a clock sitting in a dense planet or neutron star (gravitational time dilation and red shift) you must say the same thing about a clock hovering near the event horizon, because they are exactly, in every way, the same phenomenon in GR. Note that a clock hovering near the event horizon sees distant clocks going extremely fast. An infaller is different because (see Pervect's post a little earlier) because you have SR speed effects as well as gravitational time dilation.

There is one significant difference PAllen. The VIEW of the clock sitting on a neutron star is not subjected to the near 100% redshift that the clock near the event horizon is.
 
Last edited:
  • #49
pawprint said:
There is one significant difference PAllen. The VIEW of the clock sitting on a nuetron star is not subjected to the near 100% redshift that the clock near the event horizon is.

It is just a matter of degree. The clock on the neutron star is extremely redshifted. If more matter fell into the neutron star until it collapsed into a black hole, the redshift of the clock would smoothly grow arbitrarily large (assuming it maintained position on the collapsing surface, then hovers just outside the freshly formed event horizon). The phenomena are absolutely identical in GR. You cannot claim they are different (except for degree) unless you reject GR - in which case you should say so.
 
  • #50
Clarification:

A clock near an event horizon would appear to have slowed to almost nothing, considering red-shift alone and excluding gravitational effects. In 'reality', as far as it can be applied in these circumstances, the gravitation slows the clock to near zero at the singularity. The redshift, by different means, makes the clock appear to have stopped at the event horizon.
 
  • #51
pawprint said:
In 'reality', as far as it can be applied in these circumstances, the gravitation slows the clock to near zero at the singularity.

This statement doesn't even have a well-defined meaning. There are no "static" observers inside the horizon; that is, no observers who "hover" at a constant radius. So the interpretation of "rate of time flow" that works outside the horizon, and according to which a clock "hovering" near the horizon "runs very slow" compared to a clock far away, does not even work inside the horizon. Unless you can come up with some alternate way of comparing the "rate of time flow" near the singularity with that far away from the hole, you can't say anything at all about how gravitation "slows clocks" near the singularity.
 
  • #52
PeterDonis said:
...Unless you can come up with some alternate way of comparing the "rate of time flow" near the singularity with that far away from the hole, you can't say anything at all about how gravitation "slows clocks" near the singularity.
I have (see post #43). I'm sorry you don't agree. And I don't dispute GR.
 
Last edited:
  • #53
pawprint said:
I have (see post #43). I'm sorry you don't agree. And I don't dispute GR.

That's good (meaning not disputing GR). But your post #43 does not propose a valid way of defining "rate of time flow". Here is what I take to be the relevant part of your post #43, with comments interspersed:

pawprint said:
questionpost has expressed the same thought that has been concerning me for a long time, and which prompted this thread. But I'm no longer concerned. The answer I have found from the many responses is that although observers see objects slow effectively to a stop before passing the event horizon, the observation is dependent not on a single effect (time dilation) as I had previously thought but also on gravitationally caused 'slowness of light' from the object back to the observer.

For the "rate of time flow" of a *static* observer hovering close to the horizon, this viewpoint works OK. It does *not* work (at least, not as stated) for the "rate of time flow" of an observer falling *into* the hole.

pawprint said:
The same statement rephrased: Were an 'instantaneous' link available from the falling clock to a slave clock held by an observer, it would indeed show the falling clock to be slowing at a rate depending on the gravitational gradient of the particular black hole. BUT IT WOULD NOT SLOW TO ZERO at the event horizon.

Here you are trying to reason about the "rate of time flow" of an infalling clock, but you are depending on this idea of an "instantaneous link" between the infalling clock and a "slave clock" hovering far away. But you haven't defined *how* this "instantaneous link" is specified--in other words, you haven't told me, if I'm looking at a spacetime diagram of the hole, showing the worldlines of the infalling object and the "slave" clock, how to draw "lines of simultaneity" between them to define which pairs of events are "linked" by the instantaneous link. Once you do that, then you can try to define a "relative clock rate" that way; it still won't work, but at least you could try, and perhaps trying it will help you to see the problems.

pawprint said:
The appearance of this effect to an observer without a simultaneous link, while real enough, is caused by the slowness of light (or other EM signal) returning to the observer from the intense gravity field. The 'simultaneously' linked clock would only approach zero rate of change as it approached the singularity.

No, it wouldn't. See comments above; this is one of the things that might become more evident to you if you actually tried to explicitly define a "simultaneous link".

pawprint said:
The clock itself behaves exactly as it would aboard a vessel approaching light speed, with all the same implications for local and distant observers. After all, although nothing can be seen to 'break' the speed of light this doesn't change the fact that an intrepid traveller accelerating at 1 g will subjectively do so after about three years.

You have this backwards. From the standpoint of GR, the *hovering* clock--the clock that is static at a constant radius r, above the horizon--is the one that is "accelerating". The observer that is freely falling into the hole is not "accelerating" at all; he's in free fall. So if you are trying to make an analogy with an observer accelerating in a rocket, that observer is analogous to the *hovering* clock, *not* the infalling clock.
 
  • #54
Others have spoken of infalling observers and I agree with them unconditionally. I also agree with eveything you said about them in your last post. But I have not mentioned them in this thread.

As for the "instantaneous link" it will be a sad day for physics when thought experiments are disallowed.
 
Last edited:
  • #55
pawprint said:
Clarification:

A clock near an event horizon would appear to have slowed to almost nothing, considering red-shift alone and excluding gravitational effects. In 'reality', as far as it can be applied in these circumstances, the gravitation slows the clock to near zero at the singularity. The redshift, by different means, makes the clock appear to have stopped at the event horizon.

This is factually wrong. Gravitational time dilation and gravitational redshift are the same phenomenon. There is no redshift for a clock hovering near the the horizon that can be separated or distinguished in any way from the redshift of a clock sitting on a neutron star (except for degree). These are mathematical facts, not subject differences of opinion.
 
  • #56
PAllen said:
This is factually wrong. Gravitational time dilation and gravitational redshift are the same phenomenon. There is no redshift for a clock hovering near the the horizon that can be separated or distinguished in any way from the redshift of a clock sitting on a neutron star (except for degree). These are mathematical facts, not subject differences of opinion.

I know it does not fit the current paradigm. Let me try it another way: Only an infinitely deep gravitational well slows clocks infinitely. The well at the event horizon is not infinitely deep. It is certainly less deep than at the singularity. You are effectively asserting that clocks are slowed infinitely by gravity equivalent to the escape speed of light.
 
Last edited:
  • #57
pawprint said:
I know it does not fit the current paradigm. Let me try it another way: Only an infinitely deep gravitational well slows clocks infinitely. The well at the event horizon is not infinitely deep. It is certainly less deep than at the singularity. You are effectively asserting that clocks are slowed infinitely by gravity equivalent to the escape speed of light.

It is precisely infinitely deep in the sense that the thrust required to escape from near the horizon goes to infinity as you approach the horizon. This 'escape thrust' requirement is the exact equivalent of g force on a neutron star, extrapolated to the limit. Inside the horizon, there is no escape at all, and no ability to define a reasonable notion of g force. Note an earlier post, where I described that progress toward the singularity inside the horizon is progress in time, not toward a spatial point. Shoot a bunch of bullets away in all directions, and they will move away from you in all directions (spatially), while all move forward in time towards the singularity.
 
  • #58
pawprint said:
Others have spoken of infalling observers and I agree with them unconditionally. I also agree with eveything you said about them in your last post. But I have not mentioned them in this thread.

Yes, you have, though you may not have realized it. You talked about observers approaching the singularity. Such observers *have* to be infalling; there are no timelike (or null) worldlines inside the horizon that do not move continuously inwards towards the singularity.

pawprint said:
As for the "instantaneous link" it will be a sad day for physics when thought experiments are disallowed.

I wasn't disallowing your thought experiment; I was pointing out that it was incompletely specified, and saying what a proper specification would have to look like.
 
  • #59
OK. The difference between the Senior members and myself is spacetime related, and furthermore is now well defined. It need not be restated here. I think we can all agree on at least that much :{)

The generally agreed position is that we, in the 'external' universe, cannot observe a clock, or anything else except perhaps another black hole, enter an event horizon in finite time, let alone 'rapidly'. I think this position has been locked in pretty firmly by PAllen, PeterDonis and others. This position necessarily implies that gravitational wave detectors can never detect such events.

Given this I think it reasonable to consider two cosmological implications of the agreed view.

1) Several billions of dollars have been spent on gravitational wave antennas. At least some cosmologists (a large majority, perhaps) expect the antennas to detect black hole events within their limit of sensitivity. If the Senior forum members are right then those cosmologists are mistaken. The events will occur so slowly (in relation to the detectors) that the detectors will at best see them, in electomagnetic terminology, as smoothed DC.

2) The current cosmological paradigm assumes that black holes have grown in the past and continue to grow today. What alternatives exist? Did they all spring out of the primal event full blown?

A deep dichotomy is felt. The insight (or madness perhaps) I am defending agrees with the cosmologists' expectations. I cannot see how the opposing view can accommodate them.

My position has not changed since my opening post, but it has certainly become better defined from a cosmological perspective. Perhaps it would be more appropriate for a new thread to be started, possibly in a different forum, if members would like to continue in this new cosmological vein. Would a Senior member like to adjudicate (or arbitrate) on the proposition? In the meantime we can perhaps agree on a clearly shared opening position here.

Thank you all.

"Disability access is a Dalek Plot"
 
Last edited:
  • #60
pawprint said:
The generally agreed position is that we, in the 'external' universe, cannot observe a clock, or anything else except perhaps another black hole, enter an event horizon in finite time, let alone 'rapidly'. I think this position has been locked in pretty firmly by PAllen, PeterDonis and others. This position necessarily implies that gravitational wave detectors can never detect such events.
No, it does not imply that. Whether a star is torn apart and mostly absorbed by a black hole, or two black holes merge, enormous gravitational radiation (GW) will be emitted. It's (the GW) energy content will often carry away over 5% of the total mass of the star or black hole. There is no contradiction because the GW is generated by activity outside the initial event horizon. Further, the enlarged event horizon 'rings' for a while, emitting more GW. These are all oscillations of the metric (or geometry) outside the event horizon.
pawprint said:
Given this I think it reasonable to consider two cosmological implications of the agreed view.

1) Several billions of dollars have been spent on gravitational wave antennas. At least some cosmologists (a large majority, perhaps) expect the antennas to detect black hole events within their limit of sensitivity. If the Senior forum members are right then those cosmologists are mistaken. The events will occur so slowly (in relation to the detectors) that the detectors will at best see them, in electomagnetic terminology, as smoothed DC.
There is no disagreement. See above. These are difficult concepts. The only 'issue' is your level of understanding, which you are trying to improve - great!.
pawprint said:
2) The current cosmological paradigm assumes that black holes have grown in the past and continue to grow today. What alternatives exist? Did they all spring out of the primal event full blown?
Models for the formation of stellar black holes are pretty well defined. At present, there are more unknowns, than knowns, about how supermassive black holes came to be. This is an active research area. However, no one believes they are primordial; they grew somehow; it is just that models so far don't show a likely way for the big ones to form.
pawprint said:
A deep dichotomy is felt. The insight (or madness perhaps) I am defending agrees with the cosmologists' expectations. I cannot see how the opposing view can accommodate them.

My position has not changed since my opening post, but it has certainly become better defined from a cosmological perspective. Perhaps it would be more appropriate for a new thread to be started, possibly in a different forum, if members would like to continue in this new cosmological vein. Would a Senior member like to adjudicate (or arbitrate) on the proposition? In the meantime we can perhaps agree on a clearly shared opening position here.

Thank you all.

"Disability access is a Dalek Plot"


No need for a new thread. The discussion here is going fine, and I hope is helpful.
 

Similar threads

  • · Replies 22 ·
Replies
22
Views
903
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 43 ·
2
Replies
43
Views
6K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K