Vector potential with current density

Faust90
Messages
19
Reaction score
0

Homework Statement


Hey,
I got the current density \vec{j}=\frac{Q}{4\pi R^2}\delta(r-R)\vec{\omega}\times\vec{r} and now I should calculate the vector potential:
\vec{A}(\vec{r})=\frac{1}{4\pi}\int\frac{j(\vec{r})}{|r-r'|}.


Homework Equations


The Attempt at a Solution


here my attempt till now:
http://phymat.de/physics.png
I'm really not sure how to go on now. Is this right what I wrote there?
 
Last edited by a moderator:
Physics news on Phys.org
In the second equation of the notes, should the vector r in the numerator have a prime?

[EDIT: Also, do \theta and \phi refer to the unprimed position or the primed position?]
 
Last edited:
TSny said:
In the second equation of the notes, should the vector r in the numerator have a prime?

[EDIT: Also, do \theta and \phi refer to the unprimed position or the primed position?]

Hi,

thanks for your answer. I think they should all have primes.

Edit: I should only calculate the potential A(r) on the z-axis (for r=z e_z). But I don't know how this can be helpful.
 
Last edited:
Faust90 said:
I should only calculate the potential A(r) on the z-axis (for r=z e_z).

Ahh. If ##\vec{\omega}## is also along the z-axis, then life is looking Wunderbar!
 
TSny said:
Ahh. If ##\vec{\omega}## is also along the z-axis, then life is looking Wunderbar!

Hi, thanks,
Yes Omega is also along the z-Axis, but I don't know how this could help me. Didn't I have to solve the integral first?
 
Faust90 said:
Hi, thanks,
Yes Omega is also along the z-Axis, but I don't know how this could help me. Didn't I have to solve the integral first?

I don't think so. You can get the answer from symmetry considerations. Note that the current ##\vec{j}(r') d^3r'## in a small volume element makes an infinitesitmal contribution to the vector potential at ##r## of amount ##d\vec{A}(r)##, and ##d\vec{A}(r)## has the same direction as ##\vec{j}(r')##.

Do you see that each nonzero value of ##\vec{j}(r') d^3r'## is parallel to the xy plane? So, the total value of ##\vec{A}(r)## must be parallel to the xy plane at any observation point ##r##.

For this problem the observation point is at some z on the z-axis. Note that the current distribution ##\vec{j}(r')## is axially symmetric about the z axis. So ##\vec{A}(z)## would have to point perpendicular to the z-axis and yet be rotationally invariant about the z-axis. There is only one possibility for the value of ##\vec{A}## at z.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top