Vector Space Axioms: Proving Axiom 1

Dustinsfl
Messages
2,217
Reaction score
5
Since I can't copy and paste from maple into this message w/out losing formatting, I attached a pdf with all the work. I am having trouble proving axiom 1 of two general magic square matrices added together; plus, I am not sure if my set notation is entirely correct.
 

Attachments

Physics news on Phys.org
No matter how these matrices are defined, their entries are always elements from a certain field (the reals, for example), so they are commutative.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top