I Vectors in Minkowski Space & Parity: Checking the Effect

illuminates
Messages
25
Reaction score
0
It is known that vectors change them sing under the influence of parity when ##(x,z,y)## change into ##(-x,-z,-y)##
$$P: y_{i} \rightarrow -y_{i}$$
where ##i=1,2,3##
But what about vectors in Minkowski space? Is it true that
$$P: y_{\mu} \rightarrow -y_{\mu}$$
where ##\mu=0,1,2,3##.
If yes how one can check it?
 
Physics news on Phys.org
The action of parity reversal is the same for the space components. Time reversal changes the sign of the T bits.
 
illuminates said:
But what about vectors in Minkowski space? Is it true that
Just to be clear, no.
 
Thread closed as it is a duplicate thread on the same topic.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top