Velocity of COM after collision

AI Thread Summary
The velocity of the head before the collision is calculated as sqrt(2gh), indicating complete conversion of gravitational potential energy to kinetic energy. After the collision, the velocity at point A is determined by the formula vf=e•sqrt(2gh), where e is the coefficient of restitution. The head is treated as a rod with a moment of inertia of (ml^2)/12. The discussion emphasizes the importance of the impulse-momentum theorem and angular momentum conservation, particularly about a chosen origin. Understanding these principles helps in achieving a zero velocity for the center of mass after the collision.
Mooy
Messages
2
Reaction score
0
Homework Statement
Show that the velocity of the centre mass of the body is zero immediately after impact if the following equation holds.
b^2=(e•l^2)/12
Note: The head is released from rest and the only force acting on the head during impact is at point A
Relevant Equations
KE=0.5mv^2
GPE=mgh
V=rω
I=(ml^2)/12
244206

I calculated that the velocity of the head prior to the collision is sqrt(2gh), as all of the gravitational potential energy is converted to kinetic energy.

And I believe the velocity at point A after the collision is given by the formula vf=e•sqrt(2gh), with e representing the coefficient of restitution. As the ground does not change in velocity during the collision.

I believe that the head is meant to be treated as a rod with a moment of inertia of (ml^2)/12.

I’m unsure how to go about getting the centre of mass to have zero velocity, any help would be greatly appreciated
 
Physics news on Phys.org
Have you covered the "impulse-momentum theorem" and the corresponding "angular impulse-angular momentum theorem"?

Recall that angular momentum is always calculated relative to some point ("origin"). What would be a good choice for the origin in this problem?
 
TSny said:
Have you covered the "impulse-momentum theorem" and the corresponding "angular impulse-angular momentum theorem"?

Recall that angular momentum is always calculated relative to some point ("origin"). What would be a good choice for the origin in this problem?
Thanks heaps think I get it now.

Would it be to conserve angular momentum about A, and the COM has an initial angular momentum of sqrt(2gh)mb prior to the collision.
I forgot that an object without angular velocity still has angular momentum
 
Mooy said:
Thanks heaps think I get it now.

Would it be to conserve angular momentum about A, and the COM has an initial angular momentum of sqrt(2gh)mb prior to the collision.
I forgot that an object without angular velocity still has angular momentum
That will give the desired answer, when combined with your two beliefs in post #1.
 
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top