Velocity Question: Initial vs. Final Velocity at y=0

  • Thread starter Thread starter Miike012
  • Start date Start date
  • Tags Tags
    Velocity
AI Thread Summary
In projectile motion, the final velocity (Vf) at y = 0 is equal in magnitude to the initial velocity (V0) but opposite in direction, assuming no air resistance. This means that while the speeds are equal, the velocities differ due to their directions. If external forces like air resistance are considered, Vf will be less than V0. The conservation of energy principle supports this, as the kinetic and potential energy balance leads to the conclusion that |V0| = |Vf| when the object reaches the ground. Thus, the final velocity is not zero but rather equal in magnitude to the initial velocity just before impact.
Miike012
Messages
1,009
Reaction score
0
My question is... If I have an initial velocity (V0) will the final velocity(Vf) at y = 0 be equal?

I created a diagram if the question is confusing...
If so, why is this true? Because wouldn't final velocity be zero??
 

Attachments

  • velocity.png
    velocity.png
    2.3 KB · Views: 418
Physics news on Phys.org
Essentially these types of problems are asking you the velocity at the instant before the object collides with the ground. Hence, unless there are external forces dissipating the objects energy, its final (at the instant before it touches ground) will equal its initial.
 
I think this is the qoestion on projectile motion. If air resisance is neglected, final velocity is equal to initial velocity. It will never become zero throughout the time of flight. if air resistance is included, final velocity will be less than initial one.
 
Miike012 said:
My question is... If I have an initial velocity (V0) will the final velocity(Vf) at y = 0 be equal?

I created a diagram if the question is confusing...
If so, why is this true? Because wouldn't final velocity be zero??

The velocities in the picture are not equal, but of equal magnitude, as the directions differ. You can say that the speeds are equal.

If it is a projectile, the horizontal component is constant during the motion as only vertical force -gravity- acts on the object. Energy is conserved, so mgyi+1/2 mvi2=mgyf+1/2 mvf2. If yi=yf the square of the velocities are equal, vi2=vf2. That means equal magnitudes |vi|=|vf|, that is, equal speeds.


ehild
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top