Velocity Using Parametric Equations

AI Thread Summary
The discussion revolves around finding the magnitude of the velocity of an object moving according to the parametric equations x(t) = 2t^2 + 3t and y(t) = 4cos(t) at t = 3 seconds. The derivatives dx/dt and dy/dt were calculated as 4t + 3 and -4sin(t), respectively. The user initially attempted to find the velocity using dy/dx but later clarified that the magnitude of the velocity vector should be calculated using the components v_x and v_y. The correct approach involves evaluating the derivatives at t = 3, squaring them, summing these squares, and taking the square root. This method will yield the total velocity magnitude at the specified time.
GreenPrint
Messages
1,186
Reaction score
0

Homework Statement



An object moves in two dimensions according to the parametric equations x(t) = At^2 + Bt and y(t) = D cos(Et). The constants A, B, D, and E are A = 2 m/s^2, B = 3 m/s, D = 4 m, and E = 1 rad/s. What is the magnitude of the total velocity of the object at t = 3 s?

Homework Equations





The Attempt at a Solution



I'm not sure if I did this problem right. I plugged back in the constants

x(t) = 2 t^2 + 3 t
y(t) = 4 cos(t)

dx/dt = 4 t + 3
dy/dt = -4 sin(t)

dy/dx = dy/dt dt/dx = [-4 sin(t)]/[4 t + 3]

I thought that this was the velocity?

I then plugged in 3 for t and then plugged this into my calculator
[-4 sin(3)]/(12+3) and got about - .038 m/s but sense it said magnitude only I ignored the negative sign and put .038 m/s

I have the feeling I did this problem wrong. This is for my physics 2 course and is suppose to be a introductory physics course after taking physics 1 (non calculus based) and this is just suppose to be like calculus I based but parametric equations is a calculus 2 topic (in most american schools) and I'm in calculus 2 at the moment and haven't covered the topic yet and only have a brief understanding of it so I'm not sure
 
Physics news on Phys.org
What is the magnitude of the vector \vec{v}=[v_x,v_y]?
Or, how do you evaluate the magnitude of a vector knowing its components?

And, \vec{v}=[v_x,v_y]=[\frac{dx}{dt},\frac{dy}{dt}]
 
Ah I thought so, so I plug in 3 into each of the derivatives square both of these values sum these squared values and then take the square root of the whole thing?
 
Yep
|\vec{v}_{t=3}|=\sqrt{\left[\left.\frac{dx}{dt}\right|_{t=3}\right]^2+\left[\left.\frac{dy}{dt}\right|_{t=3}\right]^2}
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top