Velocity Vectors: Speed & Acceleration

  • Thread starter Thread starter joemama69
  • Start date Start date
  • Tags Tags
    Vectors Velocity
joemama69
Messages
390
Reaction score
0

Homework Statement



A particle moves with position function r(t) = t lnt\hat{i} + t\hat{j} + e-t\hat{k}
Find the velocity vector, speed, and acceleration.

Homework Equations





The Attempt at a Solution



\hat{v}(t) = (1 + lnt)\hat{i} + \hat{j} - e-t\hat{k}
\hat{a}(t) = 1/t \hat{}i + e-t \hat{k}
\left\|v(t)\right\| = \sqrt{lnt + e^(-2t) + 2lnt + 2}
 
Last edited:
Physics news on Phys.org
v(t) and a(t) look good, but you're a little off on ||v(t)||. The ln t term under the radical should be (ln t)2. Maybe you just forgot to put it in while writing the LaTeX code.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top