Apost8
- 48
- 0
Can someone please check over this real quick. I think I’ve solved this problem correctly, but, I’m not sure.
Solve: 2\sin\theta\cos\theta + 2 \sin\theta - \cos\theta -1 = 0
2 \sin\theta(\cos\theta + 1) -(\cos\theta + 1) = 0
2 \sin\theta(\cos\theta + 1) = (\cos\theta + 1)
2 \sin\theta = 1
\sin\theta = 1/2
\theta = (\frac{\pi}{6} + k2\pi)\ \mbox {or}\ (\frac{5\pi}{6} + k2\pi)
Solve: 2\sin\theta\cos\theta + 2 \sin\theta - \cos\theta -1 = 0
2 \sin\theta(\cos\theta + 1) -(\cos\theta + 1) = 0
2 \sin\theta(\cos\theta + 1) = (\cos\theta + 1)
2 \sin\theta = 1
\sin\theta = 1/2
\theta = (\frac{\pi}{6} + k2\pi)\ \mbox {or}\ (\frac{5\pi}{6} + k2\pi)
Last edited: