Vertex factor for W^- -> e + anti neutrino_e

  • Thread starter Thread starter Mithra
  • Start date Start date
  • Tags Tags
    Vertex
Mithra
Messages
16
Reaction score
0
Hi, I'm wondering if anyone can give me some advice on working out the vertex factor from a lagrangian. I think I know what I should be doing however it isn't quite getting the right answer so if anyone could guide me that would be great.

\mathcal{L}_{W^-e^-\nu_e} = \frac{g_2}{\sqrt{2}}[\overline{\nu}_{eL}W^+_{\mu}\gamma^{\mu}e_L + \overline{e}_L W^-_{\mu}\gamma^{\mu}\nu_{eL}]

Initially I just ignored the fields and so got a factor
g_2 \sqrt{2} \gamma^\mu
however I know this isn't right. From my notes I can see that there should be a 1-gamma^5 included, along with the factor being 1/(2*sqrt(2)) so I thought maybe I needed to convert the e_L s into just e using the helicity conversion

e_L = \frac{1-\gamma^5}{2}

but the factors still do not seem to be coming out correctly. I'm thinking maybe I should convert the W^(+/-) into W^1/W^2 but that doesn't look like its going to be hugely successful. I haven't yet changed the neutrino fields from left-handed as I assume neutrino fields are generically left handed anyway?

Any advice would be great, thanks!
 
Physics news on Phys.org
multiply lagrangian by i,put plane wave form for those operators.Also write the amplitude in two spinors form by using those chiral operator.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top