Vibration of a mass connected via preloaded spring

AI Thread Summary
The discussion focuses on the dynamics of a mass (m1) connected to a larger mass (m2) via a preloaded spring under vibrational forces. It explores whether the two masses will separate when the larger mass experiences vibrations, particularly at resonance frequency. The key consideration is comparing the spring force, which is influenced by preload and displacement, with the inertial force acting on the smaller mass due to acceleration. The conversation also touches on the complexities of calculating the maximum separation distance, especially under resonance conditions and the effects of preload. Overall, understanding these interactions is crucial for predicting the behavior of mechanical systems subjected to external vibrations.
sfensphan
Messages
9
Reaction score
1
The setup: I have a mass (m1)connected to a much, much larger mass (m2) via a preloaded spring. They start out in contact because the preloaded spring holds them together. Now suppose the large mass is subject to vibrations, possibly at the resonance of the structure. Will the two masses separate? If they do, what is the maximum distance between the two?

Will the two masses separate?
My original chain of thought was that if the spring force is less than the inertial force of the small mass, then the two will separate.
F_spring = -k(Δx)
k = spring constant
Δx = displacement from spring resting state. Since there is a preload, this is non-zero

F_inertia = m1 * a
m1 = mass of the small mass
a = acceleration. This should be sinusoidal, since it's a vibration

I would then compare the two and see which one is larger. I would use the max value of F_inertia during this comparison.

If they do, what is the maximum distance between the two?
This is where I get a little lost. A static calculation would be to find where Δx is such that F_spring = F_inertia.
But what if the system vibrated at resonance frequency (which I believe would be sqrt(k/m1) for this case)?
How do I deal with the preload?
Is the Force body diagram such that the sinusoidal force acts directly on the m1?
Do I need to know how much the larger mass is displaced?

upload_2018-7-14_0-15-27.png
 

Attachments

  • upload_2018-7-14_0-14-51.png
    upload_2018-7-14_0-14-51.png
    3.8 KB · Views: 596
  • upload_2018-7-14_0-15-27.png
    upload_2018-7-14_0-15-27.png
    3.8 KB · Views: 696
Engineering news on Phys.org
sfensphan said:
I have a mass (m1)connected to a much, much larger mass (m2) via a preloaded spring. They start out in contact because the preloaded spring holds them together. Now suppose the large mass is subject to vibrations, possibly at the resonance of the structure. Will the two masses separate? If they do, what is the maximum distance between the two?

just as a help to your approach one can see the given reference-

actually ...In engineering practice, we are almost invariably interested in predicting the response of a structure or mechanical system to external forcing.

For example, we may need to predict the response of a bridge or tall building to wind loading, earthquakes, or ground vibrations due to traffic. Another typical problem you are likely to encounter is to isolate a sensitive system from vibrations. For example, the suspension of your car is designed to isolate a sensitive system (you) from bumps in the road.

Electron microscopes are another example of sensitive instruments that must be isolated from vibrations. Electron microscopes are designed to resolve features a few nanometers in size. If the specimen vibrates with amplitude of only a few nanometers, it will be impossible to see! Great care is taken to isolate this kind of instrument from vibrations. That is one reason they are almost always in the basement of a building: the basement vibrates much less than the floors above.

reference-http://www.brown.edu/Departments/Engineering/Courses/En4/Notes/vibrations_forced/vibrations_forced.htm
 
  • Like
Likes sfensphan
Thanks very much. From your link, I see that it is a base excitation case. Greatly appreciate you leading me in the right direction.
 
  • Like
Likes drvrm
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
TL;DR Summary: Heard in the news about using sonar to locate the sub Hello : After the sinking of the ship near the Greek shores , carrying of alot of people , there was another accident that include 5 tourists and a submarine visiting the titanic , which went missing Some technical notes captured my attention, that there us few sonar devices are hearing sounds repeated every 30 seconds , but they are not able to locate the source Is it possible that the sound waves are reflecting from...
Back
Top