Volume generated by revolving curve around axis

togo
Messages
106
Reaction score
0

Homework Statement


Find the volume generated by revolving the regions bounded by the given curves about the x-axis. Use indicated method in each case.
Question 11: y = x^3, y = 8, x = 0
Question 15: x = 4y - y^2 - 3, x = 0

Homework Equations


for question 11: Shells
for Question 15: Shells
Shells:
2pi int xy dy

The Attempt at a Solution


Question 11:
2pi x(x^3) dy
x^4
1/5x^5 = 1/5(4^5)
= 204.8
*2pi = pi409.6

The answer should be 768/7 pi

Question 15:
I guess the goal here is isolate Y. So far:
y(4y - y^2 - 3) = 4y^2 - y^3 - 3y
4(1/3y^3) - 1/4(y^4) - 3(1/2y^2)
Went back and decided Y needs to be isolated but not confident on if that should be done or how so posted it here.

Thanks
 
Physics news on Phys.org
I think the answer here is to understand the method of shells rather than just applying the formula.

For 11. for example, ##\int x^4dy \neq \frac{1}{5}x^5 + c## ... that would be the case if you were integrating with respect to x. You must integrate with respect to y.

You can understand this as follows:

The region to be rotated is between the curve ##y=x^3## and the y axis, between y=0 and y=8.
The strategy is to divide the volume into shells thickness dy, with height x depending on the radius y.

The volume of a single shell of radius y and height x(y) like that is ##2\pi x(y)ydy## and the total volume you want is the sum of all these single-shell volumes from y=0 to y=8. So you need x as a function of y.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top