A Von Neumann Entropy of a joint state

Danny Boy
Messages
48
Reaction score
3
Definition 1 The von Neumann entropy of a density matrix is given by $$S(\rho) := - Tr[\rho ln \rho] = H[\lambda (\rho)] $$ where ##H[\lambda (\rho)]## is the Shannon entropy of the set of probabilities ##\lambda (\rho)## (which are eigenvalues of the density operator ##\rho##).

Definition 2 If a system is prepared in the ensemble ##\{ p_j, \rho_j \}## then we define the Holevo $\chi$ quantity for the ensemble by $$\chi := S(\rho) - \sum_j p_j S(\rho_j) $$

Short Question : Let ##A## and ##B## be two quantum systems in a state of the form $$\rho^{(AB)} = \sum_k q_i |a_{i}^{(A)} \rangle \langle a_{i}^{(A)} | \otimes \rho_{i}^{(B)} $$
where the states ##|a_{i}^{(A)} \rangle## are orthogonal. What property of the von Neumann entropy implies that the von Neumann entropy of the joint state is $$S(\rho^{(AB)}) = H(\vec{q}) + \sum_i q_i S(\rho_{i}^{(B)})? $$

Thanks for any assistance.
 
  • Like
Likes atyy and Johny Boy
Physics news on Phys.org
Proposal: I'm pretty sure it makes use of the following properties of von Neumann entropy: $$S(\rho_{A} \otimes \rho_{B}) = S(\rho_{A}) + S(\rho_{B})$$ and if ##\rho_{A} = \sum_{x} p_x | \phi_x \rangle \langle \phi_x|## then $$S(\rho_{A} \otimes \rho_{B}) = H(X) + S(\rho_{B})$$ where ##X = \{| \phi_x \rangle, p_x \}##. I'm still missing something which leads to the result stated above...
 
Where did you see this?
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top