Wackerly/Mendenhall/Schaeffer Problem 2.74: Double the Probability?

  • Context: MHB 
  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
SUMMARY

The discussion revolves around calculating the probability of a lie detector showing a positive reading for two suspects, one of whom is guilty. The probabilities provided are P(IL|L) = 0.95 for a lying suspect and P(IL|¬L) = 0.1 for an innocent suspect. The correct approach involves determining the probability of the intersection of these events, leading to a final probability of P = P(IL|L) * P(IL|¬L) = 0.095. The participants clarify the distinction between union and intersection in probability, confirming that the events are independent.

PREREQUISITES
  • Understanding of conditional probability
  • Familiarity with the concepts of independent events
  • Basic knowledge of set theory, particularly union and intersection
  • Experience with probability notation and calculations
NEXT STEPS
  • Study the principles of conditional probability in depth
  • Learn about independent and dependent events in probability theory
  • Explore set theory concepts, focusing on union and intersection
  • Practice solving problems involving lie detectors and similar probabilistic scenarios
USEFUL FOR

Students of statistics, data analysts, and professionals in law enforcement or forensic science who need to understand the implications of lie detector tests and probability calculations in real-world scenarios.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Problem: A lie detector will show a positive reading (indicate a lie) $10\%$ of the time when a person is telling the truth and $95\%$ of the time when the person is lying. Suppose two people are suspects in a one-person crime and (for certain) one is guilty.

What is the probability that the detector shows a positive reading for both suspects?

Answer: Let $L$ be the event that a suspect is lying, and let $IL$ be the event that a lie detector indicates a lie. We are given the following probabilities:
\begin{align*}
P(IL|L)&=0.95 \\
P(IL|\overline{L})&=0.1.
\end{align*}
Moreover, we may assume that the innocent suspect is telling the truth, and the guilty suspect is lying. We do not know which suspect is guilty and which is innocent, presumably. We may infer that
\begin{align*}
P(\overline{IL}|L)&=0.05 \\
P(\overline{IL}|\overline{L})&=0.9.
\end{align*}

Here's my question: since we don't know which suspect is innocent and which is guilty, should we multiply $P(IL|L) \cdot P(IL| \overline{L})$ by two, since there are two ways to assign the guilty and innocent suspects? Or am I overthinking it here? I'm probably missing something obvious.

Thanks for your time!
 
Physics news on Phys.org
Ackbach said:
Problem: A lie detector will show a positive reading (indicate a lie) $10\%$ of the time when a person is telling the truth and $95\%$ of the time when the person is lying. Suppose two people are suspects in a one-person crime and (for certain) one is guilty.

What is the probability that the detector shows a positive reading for both suspects?

Answer: Let $L$ be the event that a suspect is lying, and let $IL$ be the event that a lie detector indicates a lie. We are given the following probabilities:
\begin{align*}
P(IL|L)&=0.95 \\
P(IL|\overline{L})&=0.1.
\end{align*}
Moreover, we may assume that the innocent suspect is telling the truth, and the guilty suspect is lying. We do not know which suspect is guilty and which is innocent, presumably. We may infer that
\begin{align*}
P(\overline{IL}|L)&=0.05 \\
P(\overline{IL}|\overline{L})&=0.9.
\end{align*}

Here's my question: since we don't know which suspect is innocent and which is guilty, should we multiply $P(IL|L) \cdot P(IL| \overline{L})$ by two, since there are two ways to assign the guilty and innocent suspects? Or am I overthinking it here? I'm probably missing something obvious.

Thanks for your time!

We have to find the probability of the union of two separate events, one with probability $P_{1}= P(IL|L)=.95$ and the other with probability $P_{2} = P(IL|\overline {L}) = .1$. The requested probability is $P = P_{1}\ P_{2} = .095$. You can easilily verify that considering that the set of all possible events has probability $P_{T} = P_{1}\ P_{2} + P_{1}\ (1 - P_{2}) + P_{2}\ (1 - P_{1}) + (1 - P_{1})\ (1 - P_{2}) = 1$...

Kind regards

$\chi$ $\sigma$
 
Do we know that the guilty person will lie and the innocent person won't?
 
chisigma said:
We have to find the probability of the union

Did you mean "intersection" here?

of two separate events, one with probability $P_{1}= P(IL|L)=.95$ and the other with probability $P_{2} = P(IL|\overline {L}) = .1$. The requested probability is $P = P_{1}\ P_{2} = .095$.

This assumes that $IL|\overline{L}$ and $IL|L$ are independent events. Is that correct?

You can easily verify that considering that the set of all possible events has probability $P_{T} = P_{1}\ P_{2} + P_{1}\ (1 - P_{2}) + P_{2}\ (1 - P_{1}) + (1 - P_{1})\ (1 - P_{2}) = 1$...

That's true of independent events, correct? Is it also true that if the equation you wrote down holds, the events must be independent?

Kind regards

$\chi$ $\sigma$

Random Variable said:
Do we know that the guilty person will lie and the innocent person won't?

I am assuming that. Presumably the guilty one would not want to go to jail, and would lie to get out of it.
 
Ackbach said:
a)Did you mean "intersection" here?...

b) This assumes that $IL|\overline{L}$ and $IL|L$ are independent events. Is that correct?...

c) That's true of independent events, correct?... Is it also true that if the equation you wrote down holds, the events must be independent?...

a) I apologize but in fact set theory has ever been troublesome for me, so that I confuse 'union' and 'intersection'... 'intersection' is correct...

b) Yes!... it is implicit in the definition You have done...

c) Non necessarly!... we have simply two different events, the first with probability $P_{1}$ to be KO and $1-P_{1}$ to be OK, the second with probability $P_{2}$ to be KO and $1-P_{2}$ to be OK, and the probability of the overall set of possibilities must be 1...

It is important to note that all that is true no matter if the questioned people are 'guilty' or 'innocent'...Kind regards

$\chi$ $\sigma$
 

Similar threads

Replies
1
Views
5K
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K