I am to show that neither of the two wave functions [tex]\psi_1 (x,t) = M_1 e^{kx-\omega t}[/tex] and [tex]\psi_2 (x,t) = M_2 e^{i(kx-\omega t)}[/tex] solve the de Broglie form of Schr. Eqn:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]-\frac{\hbar ^2}{2m} \frac{\partial ^2 \psi}{\partial x^2}=i \hbar \frac{\partial \psi}{\partial t}[/tex]

for the first wave, i got:

[tex]-\frac{\hbar ^2}{2m} M_1 k^2 e^{kx-wt}=-i \omega \hbar M_1 e^{kx-\omega t}[/tex]

for the second wave, i got:

[tex]\frac{\hbar ^2}{2m} M_2 k^2 e^{i(kx-\omega t)}= \omega \hbar M_2 e^{i(kx-\omega t)}[/tex]

i was just wondering if I did these differentiation correct.

**Physics Forums - The Fusion of Science and Community**

# Wave funtions

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Wave funtions

Loading...

**Physics Forums - The Fusion of Science and Community**